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MULTITARGET TRACKING USING OPTICAL PROCESSING

CMU-ONR SDIO/IST
Final Report, August 1991

INTRODUCTION

This final report completes the last documentation on the end of our ONR SDIO/IST

optical processing effort.

Chapter 2 notes our KL time sequential novelty filter work. This locates new regions in

time sequential imagery and thereby describes objects (and scenes) in a greatly compressed

manner. Chapter 3 notes a new method and algorithm to locate object/line locations from

Hough transform outputs.

Our major emphasis before funding ended concerned processing real ISTEF data and

performing all tests in real time in the optics lab.

Chapter 4 presents our optical laboratory results (on real ISTEF data) for detection of

subpixel targets and locating targets to subpixel accuracy. This chapter also notes particular

aspects of the real data and h9w our algorithm overcomes them. It also notes (and models) how

newer and preferable ISTEF sensors (with better sensitivity, fewer pixels, etc.) can be used with

our algorithms.

Chapter 5 presents our optical laboratory results (on real ISTEF data) of our Hough

transform track initiation results.

Chapter 6 presents real time optical laboratory results of our neural net data association

system. Other aspects of the full multitarget tracking system are also documented.



Chapter 7 describes our full system. It notes the corrective nature of it and that a simple

track estimator suffices.

Chapter 8 fully details our data association neural net.
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CHAPTER 2

"KARHUNEN-LOEVE TECHNIQUES FOR OPTIMAL
PROCESSING OF TIME SEQUENTIAL IMAGERY"

P. Vermeulen and D. Casasent



Karhunen-Loeve techniques for optimal processing
of time-sequential imagery

Pieter J. E. Vermoulen Abstract. Time-sequential imagery is difficult to analyze because of its
David P. Casasent, FELLOW SPIE high dimensionality. This paper advances a new algorithm that screens
Carnegie Mellon University input data in an intelligent way, discards data with negligible information,
Center for Excellence in Optical Data and uses the remaining images to represent the sequence in an optimal

Processing compact form. We present data to illustrate how this algorithm can be
Department of Electrical and Computer used to do novelty filtering, novelty detection, segmentation, background

Engineering independent modeling, and classification.
Pittsburgh, PA 15213 Subject terms: truncated Karhunen-Love expansion; time-sequential novelty fl-

tering; novelty detection.

Optical Engineering 30(4A 415-423 (April 1991).

CONTENTS by a set of basis vectors and coefficients associated with each
I. Introduction basis vector. One such set of basis vectors and coefficients is
2. Karhunen-l.ove description of time-sequential imagery the eigenvectors and eigenvalues of the covariance matrix of the
3. Novelty detector and filter algorithm process. This is the KL expansion of the process.
4. Applications and case studies Section 2 reviews the KL expansion, several techniques to
5. Optical implementation compute it efficiently for an image sequence, and shortcomings
6. Conclusion associated with each. A new and efficient algorithm is then
7. Acknowledgments advanced in Section 3, and we discuss the use of this algorithm
8. References for various new applications in Section 4. These applications

1. INTRODUCTION include three-dimensional object modeling, background mod-
eling, novelty detection, novelty filtering, tracking, and the abil-A salient aspect of visual data is the large amount that is gen- ity to determine the type of new information in new frames of

erated in typical situations. 1-3 For video data, bit rates of 5 Mb/s time sequential imagery. Section 5 advances a real-time optical

are typical. Thus, it would be useful to limit the amount of dat architecture that implements this algorithm.

that must be processed at a particular instant. Fortunately, most

of an input image sequence is usually quite redundant. Consider 2. KARHUNEN-LO VE DESCRIPTION OF
the output of a camera mounted on an autonomous vehicle: Most TIME-SEQUENTIAL IMAGERY
of the information in a frame is relatively slowly changing back-
ground. Once the background is known, only a small percentage Given a process with samples xi (where i = I.... J), which is a
of the information in a frame is new or novel. Also, most new sequence of! lexicographically scanned images, we wish to find
information consists of shifts in the location of an object or an optimum comppressed description of that sequence. One de-
different aspect views of an object that has already been seen. scription of a process is a series expansion in terms of a set of

Our concern is to process a time sequence of images and to basis vectors, the most obvious being the sequence of images
model objects and/or background from a time-sequential image itself. The optimum series expansion description of the sequence
sequence in a compact form suitable for recognition. This is I is the KL expansion':
closely related to bandwidth compression problems" in image
transmission. However, we are not concerned with the visual t = X()
quality of the result, but rather with the ability of the model
produced by the compression technique to retain information
useful for recognition purposes. Such problems can be solved where 4ok and X, are the normalized eigenvectors and eigenval-
optimally by using a truncated Karhunen-Love 7- ' ° (KL) ex- ues, respectively, of the sample covariance matrix C of the
pansion of the process. In this case, the process is represented sequence of input vectors. The eigenvector and eigenvalue pairs

are ordered in terms of descending eigenvalues. In an optimum
Invited pae received May 9, 1989; accepted for publication September 16, series expansion representation, the basis vectors must be mu-
1990. This paper is a revision of paper 1007-19 presented at the SPIE conference tually orthogonal to ensure that the information contained in
Mobile Rotots held November 1988 at Cambridge. The paper presented there each is unique, as is the case when the basis vect6rs are eigen-
apears (unrefereed) in SPIE Proceedings Vol. 1007.

1991 Society of Photo-Optical Instrumentation Engineers. vectors.
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VERMEULEN, CASASENT

For an entire time-sequential process, energy is a measure of where m is the process mean. The VIP matrix is I X I (which
activity or information. In some recognition tasks, the mean of is smaller than C), hence, calculation of its eigenvectors 0, and
a process does not contain significant discrimination information eigenvalues -yi (i = I ... f.,/) is simple. We use the term eigen-
and this information should not be included in the optimum vector to refer to the normalized eigenvectors of the lower di-
description. The mean information can be ignored by using the mensionality VIP matrix. We use the term eigenimage in refer-
variance instead of the energy of the process as a measure of ring to the eigenvectors (not normalized) of the higher
information. The variance of the process is the sum of all the dimensionality covariance matrix C. The larger dimensional nor-
eigenvalues. If the basis vectors are orthogonal, then the amount malized eigenimages + and their eigenvalues Xi can be obtained
of relative information preserved in each eigenvector is given from the eigenvectors 0i, their eigenvalues -yi, and the original
by its eigenvalue normalized by the sum of all the eigenvalues. images using
If the mean information is important, then we can preserve it in
the optimum representation by using the correlation matrix R of , = . 5-
the process instead of the covariance matrix C. When using R, (3)
the energy of the process is the sum of the eigenvalues, and as v
before we can calculate the relative amount of information in
each eigenimage, where the information measure in this case is where 0f is the k'th element of the i'th eigenvector 0j. The
the energy of the process. eigenvalues -yi of the VIP matrix and the eigenvalues Xi of the

The KL expansion of a process is attractive because the set covariance matrix are equal. Thus, the eigenimages of C with
of basis vectors can easily be ordered in terms of the information nonzero eigenvalues are linear combinations of the input images
content of each (as explained above). The eigenvalues provide with weighting coefficients given by the elements of the cor-
a measure of the information content, allowing us to make de- responding eigenvector of V as in Eq. (3).
cisions on the number of basis vectors and which basis vectors The number of images I in a sequence is still large (1800 for
to retain to store a certain percentage of the information in the only a r-min sequence of video data), and the eigenvector so-
sequence. We will make use of this in our time-sequential work. lution of the reduced dimensionality I x I eigenvalue problem
If the expansion is truncated and only the basis vectors associated described above still requires excessive calculations and storage
with the largest eigenvalues are kept, then this truncated KL of all the images. However, in most time-sequential image se-
expansion is the minimum mean square error representation of quences and applications, a significant number of the eigenvalues
the process (and is more compact than any other series expansion of V are also zero or sufficiently close to zero to be ignored
with the same number of basis vectors). (since the VIP matrix is also highly singular because of the

Even if we only desire the set of K eigenvectors associated natural redundancy in an image sequence). As an example of
with the K largest eigenvalues, this computation is generally too when this occurs, consider a time sequence of images in which
complex for an image sequence. Consider a sequence of N X N the only difference between successive frames is a slow change
two-dimensional images, each of which islexicographically or- in the scale, aspect, or rotation of an object in the scene. To
dered into a one-dimensional N2 element vector. The covariance qn th s iuatio, we geat e four seece o2 2 quantify this situation, we generated four sequences of four
matrix is large (N2 x N2 - 64K x 64K for a 256 x 256 im- different rolling aircraft flying in a straight line with only roll
age), making the direct calculation of its eigenvectors very dif- differences between frames. Each sequence had 36 images at
ficult. The covariance matrix is also highly singular with a rank I0-deg intervals of roll, with the aircraft centered in each frame.
much less than its dimensions. Recursive algorithms, such as For these data, we found that 3 eigenimages contained enough
the simultaneous iteration method' and stochastic gradient as- information to recognize the aircraft correctly in any roll ori-
cent method,8 have been suggested to ease the computation of entation in the sequence (and could also recognize a test set of
the eigenvectors of this large matrix. Although they allow more 12 images at orientations not included in the training set). We
efficient calculation of the first few eigenvectors, the compu- therefore concluded that the rank of the VIP matrix and hence
tations are still excessive (because convergence is slow and often also the rank of the covariance matrix for this process was close
does not occur) and both algorithms require the storage of all to 3, which is much smaller than the number (36) of training
of the images in the sequence. This very excessive storage re- images. Because we correctly classified the aircraft at roll ori-
quirement is in contrast to our goal of data compression. entations not presented in the training set, we concluded that if

When the number of images I in the sequence is much smaller more training images were included in the training set, the rank
than the dimension N2 of each image, an economical technique of V and C would still have been close to 3.
to obtain the eigenvectors of C uses singular value decomposition For such cases when the rank K of a process is much less
(SVD): Since the covariance matrix has a rank of at most 1, than I and is known in advance, a recursive SVD algorithm13-14
there are at most only I nonzero eigenvalues, and those eigen- can be used to estimate the K dominant eigenvectors and eigen-
vectors corresponding to the zero eigenvalues are not of interest images of the process (with a required storage of no more than
because they contain zero information. The simplified algorithm 12  K images). When K can be 5 to 10 out of a sequence of I = 1800
to compute the eigenvectors and eigenvalues using SVD is to images, this is quite significant. To start the algorithm, the first
form the vector-inner-product (VIP) matrix V of the image se- K + I images in the sequence are used to calculate an initial
quence with the mean removed, calculate its eigenvectors, and set of K + I eigenimages using SVD. The last eigenimage (with
from them obtain the eigenimages of the covariance matrix. We the smallest eigenvalue) is discarded and the dominant K eigen-
now highlight this algorithm. images are used as an initial estimate of the first K + I images

The VIP matrix with elements v (1, m) is given by in the process. As a new image arrives, it is combined with the
V(l.m)=V(m')=(I/I) (xJ - m)T(l, - m) , lm-,..... I Keigenimages weighed by the square root of their eigenvalues

(2) and a new set of K + I eigenimages is formed. The smallest
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KARHUNEN-LOEVE TECHNIQUES FOR OPTIMAL PROCESSING OF TIME-SEQUENTIAL IMAGERY

eigenimage from this set is then discarded. This process of up- recursive SVD) and we control this by a novelty detector. We
dating a set of K eigenimages is continued until the process is now discuss our algorithm and detail these issues.
completed, at which time the resultant K eigenimages are used Our adaptive recursive SVD algorithm is summarized in Ta-
as a description of the image sequence. ble 1. Steps I through 3 initiate the process and read the first

This algorithm is storage efficient because only the K most image (Ki = I). This image is the initial representation of the
significant eigenimage estimates are saved and because each process and is therefore used as the first eigenimage. Its eigen-
image is seen only once. It is also computationally efficient since value is its squared modulus. The iteration counter i (step 4)
the eigenvectors and eigenvalues are calculated from the smaller denotes the number of times that the eigenimages have been
VIP matrix. However, it has three shortcomings. First, a priori updated. The sequence counterj (step 6) denotes the number of
knowledge of the rank of the process is required (i.e., the number the current input image in the sequence. This can differ from
of eigenvectors K to be saved). Such information is often not the number of iterations i because input images with negligible
available. Secondly, no clear relation exists between K and the information are discarded, without updating the set of eigen-
amount of information retained in the final set of eigenvectors images and hence incrementing i. In steps 4 through 6, the
because information is discarded at each iteration. Therefore, number of iterations is incremented and so is the rank estimate
the final K eigenimages obtained are only approximations of the K (to allow for the possibility of adding an additional eigen-
K eigenimages of C associated with the largest eigenvalues. The image) and a new image is read. If the new image is not novel
third problem is that the process must be zero mean. If the (step 8), then the algorithm returns to step 6, reads a new image,
process is not zero mean, then all of the images have to be and proceeds; K is incremented only if the input image is novel
collected and stored before the mean vector can be estimated and negligible eigenimages are discarded in step 10, thus pos-
and subtracted from each image at each iteration step, which is sibly reducing K.
not realistic. In the i'th iteration, we have a Ki x Ki VIP matrix and its

We now discuss these issues further and present a new al- i eigenvectors O. for 1= 1,... ,Ki and Ki eigenvalues kX.1 for
gorithm that overcomes these disadvantages and yet retains the 1= 1....Ki. In the next iteration, we enter step 4, where we
computational and storage advantages of recursive SVD. increment Ki (step 5) and read in a new image (step 6). We

compute the new VIP matrix (step 7) in Eq. (2) and compute
its eigenvalues and eigenvectors. This operation is greatly sim-

3. NOVELTY DETECTOR AND FILTER ALGORITHM plified as we now detail. At the present iteration, only one new
We do not use zero mean data (because the computation of the image is present and thus Ki - I of the Ki vectors forming the
mean of the process requires excessive storage as noted above), new VIP matrix Vi are already orthogonal (since they are the
In our applications, the mean information is important (for ex- prior Ki - 1 retained eigenimages). Specifically, the top-left
ample, to estimate the image background) and we have found Ki,- I x Ks-I submatrix of Vi is diagonal and its known first
that keeping the mean information does not influence our rec- K, - I diagonal elements are
ognition applications. We will use the VIP matrix of the nonzero i - I
mean data. In this case, its eigenvalues equal those of the cor- vi(Il) - ki_ i.1 for 1=I....K - I (4)
relation matrix R rather than the covariance matrix C. The KL
expansion uses the covariance matrix and compresses infor-
mation to preserve maximum covariance of the process, which
leads to a minimum least-squares error representation of the
process. Calculating the eigenimages of the correlation matrix Stop Description
rather than those of the covariance matrix is equivalent to com- 1 Initialize the iteration counter i = 1 and the sequence counter j = 1
pressing information to preserve maximum energy rather than
maximum variance of the process and also leads to a minimum 2 Initialize the covariance rank estimation K, = 1.
least-squares error representation of the process." The rank of 3 Read the first image x, to form the first estimate of the eigenimages of the
the correlation matrix R is one more than the rank of the co-
variance matrix C since it also contains the mean or background process.
information. When we use the VIP matrix of R, we are not 4 Increment the iteration counteri
computing the KL basis set of the process, but are determining
a related (and equally useful) basis set with one additional vector s Increment the rank estimate K, = K,_1 + 1
that contains the background information. 6 Increment the sequence counter j and read the next image in the sequence x,.

We refer to our new algorithm as a novelty detector and filter
(these terms will become clear shortly). We monitor the infor- 7 Form the K, x Ki VIP matrix V as detailed in Eqs Eq. (4) and Eq. (5).
mation content (process energy) and ensure that a given per- 8 If the current image is not novel as indicated by the novelty detector in Eq. (8),
centage of the information in the image sequence is retained in
our eigenvector representation. This is a more direct measure of then go to step 6
performance than retaining a fixed number K of eigenimages. 9 Form the K eigenimages and eigenvalues from the eigenvectors and eigenvalues
To achieve this, we allow the number K of eigenimages retained
to vary and to adapt to the data (i.e., we adapt the number of of V, according to Eq. (9). This updates our eigenimage set.

significant eigenimages to the given image sequence and appli- 10 Estimate the rank of the process k, using Eq. (11) Determine if one should add
cation and do not fix K as is required in recursive SVD). We
provide two novelty measures (discussed below) for use in con- an additional eigenimage or discard the excess eigenimages Set K, = ,.
trolling the processor. We also discard new input images (with 11 If there are more images in the input sequence. then go to s'tp 4
negligible information) rather than eigenimages (as is done in

OPTICAL ENGINEERING /April 1991 /Vol. 30 No 4 / 417



VERMEULEN. CASASENT

Thus, the only new elements in the VIP matrix are the elements (true if n, > Td

in the last row vi(Ki,l) and column vi(I,Ki). Since the VIP matrix N{xl = (8)
is symmetric, we need only concern ourselves with its last row false otherwise
or column. These elements are given by

When N{xj} is true, image xj is novel. If N(xj} is false. we
vi(l.K) = v 1(K.l)=(li)xJri_1 , for1= l,....K 5-I discard image xj and return to step 6. For Td in Eq. (8) we

v,(K,K) = (I/i)xrxj (5) typically use 0.001 to 0.05. This concludes step 8.
If we determine (step 8) that xj is novel, we now include it

They are easily calculated as the VIP of the new image xj and in our data (eigenimages). Then we determin e irshould add

the prior eigenimages +i- I.k and only Ki (a small number) VIP an additional eigenimage and increment Ki. We first calculate

calculations are needed. This completes step 7. (step 9) the new set of Ki eigenimages and eigenvectors from

In step 8, we determine if the new image should be used or the VIP matrix Vi and the prior K - 1 eigenimages. Because
not (i.e., is it novel?). When modeling a very unconstrained Vi is small, real, and symmetric, its eigenvectors and eigenvalues
process such as an aircraft, we would like to select the training are easily calculated in real time by techniques such as the Jacobi
images carefully to avoid cluttering the problem with too much algorithm or the QR method. 1-' 8 The set of Ki new cigenimages
data. There are two advantages to reducing the sample data set. +i.k (eigenimage k at iteration i) can be obtained from the ei-

First and obvious, by limiting the number of input images, we genvectors 0i. of the new VIP matrix (where o.k is the i'th
are limiting the dimensionality of the problem and therefore its element of the k'th eigenvector of Vi at iteration i), the Ki - I
computational complexity. Second, a lower dimensionality prob- prior eigenimages i- I.k, and the new input image xj by
lem ensures better conditioning of the VIP matrix and therefore K-1

reduces the computational resolution (or precision) requirements of. = ., - , + O,.K , (9)
in the algorithm. In step 8, we determine whether the input image
xj contains enough significant information to merit its inclusion
in the training set. If the image does not contain statistically From Eq. (9), we see that computing the eigenimages from the
significant novel information, then we discard it (step 8) and eigenvectors of Vi is simple. It involves only additions of the
consider the next input image (step 6). We now discuss how to eigenimages 40i-I 'k and the new input image xj, weighed by
determine this measure of novelty, the eigenvector elements O.k. All pixels of each image are weighed

The entries in the last column (row) of the new VIP matrix by the same value. Calculation of the eigenimages and their
Vi are the VIPs of the new image xj and the prior set of eigen- eigenvalues completes step 9.
images 40i- .k for k = 1..... Ki - 1. The diagonal elements of Vi In step 10 we determine the number of new eigenimages to
are the modulus of each eigenimage and are unchanged except keep. During each iteration, we increment the rank estimate
for the last diagonal element, which is the modulus of the newest (step 5) and compute a new set of eigenimages (step 9). Since
input image xj,. From these elements of Vi, we can compute the the new image information is (potentially) included in all the
angle between the xj and each one of the set of eigenimages. new eigenimages, we have reorganized and redistributed the
The cosines of these angles are the projections of a unit vector present data by computing the new set of eigenimages. The rank
along the direction of xj onto each of the eigenimages. The set of the new sample correlation matrix R; (of all novel images
of eigenimages forms a normal basis set in Euclidean space and thus far) does not necessarily increase by one, even if the new
therefore the squares of these projections of the unit vector can, image contained a significant amount of new information. We
at most, sum to one. If xj is contained in the set of eigenimages, now detail how we form an estimate of the true rank of Ri. Each
then the squares of the projections will sum to one. If xj is eigenvalue of Vi, when normalized by the sum of all the eigen-
orthogonal to the set of eigenimages, then the squares of the values, indicates the fractional information in the corresponding
projections will sum to zero. The sum of the squares is therefore eigenvector. Since the eigenvalues of Vi equal those of Ri, this
a measure of the percentage of xj that is contained in the set of measure of fractional information also holds for the k = Ki
eigenimages (a correlation coefficient) and can therefore be used eigenimages 4ik. (We assume that the information discarded at
to obtain a novelty measure ni. We first calculate the direction each iteration is negligible.) The fraction F,.k of information in
cosines a£, k at iteration i of the input image xj in the direction eigenimage k is
of each eigenimage 40- IA:

= J16 - 1, vik,K,)) Fi.k ,k* (10)Cl"* = IXjl 1,1,-,1 lk /- ,(K,.K,) v,(k, k) (6 K-

k

and subtract the sum of their squares from one to obtain the
novelty measure ni: where Xi.k is the k'th eigenvalue at the i'th iteration and where

K-I K- the denominator normalizes this by the sum of all K eigenvalues
2 - v,(k, Kg) (7)

fl = I - 2 v,(kk) V(KKi)7) at iteration i. If the fractional information in the last new ei-
1 k" v k)genimage FX, is close to zero, then the rank of Ri is less than

Note that calculation of the eigenvectors and eigenvalues of the K,. An estimate of the rank K, of Ri is given by
VIP matrix Vi is not necessary in order to calculate this novelty
measure. Rather, we require only the VIPs. A novelty detector -
for image xj can now be defined by comparing the novelty , = min m such that E F.k -- T, (1)
measure ni in Eq. (7) to a threshold Td: k=

418 / OPTICAL ENGINEERING / April 1991 / Vol. 30 No. 4
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where Ti is a threshold that determines the information capacity -. VIP '.- SVD Rank
of the filter (algorithm). When T! = 1, we are computing the Est

true set of eigenimages of R and are retaining all information '- Novelty
in the process in the final set of eigenimages. With Tt < 1, we
are limiting the information capacity of the set of eigenimages v, i
by purposefully discarding statistically insignificant information.
We choose Tt such that Ki in Eq. (11) remains small, while
maintaining a high information capacity. Typical values for T1 Fig. 1. Block diagram of adaptive recursive SVD.
are 0.95 in the case of segmentation and 0.99 in the case of
novelty filtering (see Section 4). Input Frame Novel Data- Remarks

After we have made the new rank estimate ki, we discard -,wu , -' -''Ww V.! -
the Ki - Ki excess eigenimages and set Ki = Ki step 10). This (a) Frae 1
is different from the recursive SVD algorithm, 1 which always V. = =
removes an eigenimage. We allow for not removing any eigen- n . all novel
images at all or for removing several eigenimages, should this first image, expected
be necessary. We then form our novelty filter ij (our present Fk = 1 (fraction new) all
description of the process) as a weighted sum of the retained
eigenimages.(bFrm2

Our main concern is to first check the novelty of the input I37 8 0
image (step 8), before initiating the calculation of the eigen- v, =
vectors and eigenimages, and to allow for an increase in Ki in
such cases (step 5). However, we do not recursively increase n' = 0.001811. not novel
the number of eigenimages Ki, unless the storage capacity of Ki no update
eigenimages has been proven to be too low, as indicated by the
fractional information in the last eigenimages. There are many (c) Frame

variations in the use of the parameters in this algorithm (several n. = 0.002498, novel

are addressed and quantified in Section 4). For example, we can update eigenimages
monitor ni and when it remains small and constant, we can feel ,.. = [0.999375 0.0006251
comfortable that we have modeled the process and that the pro- keep one e-image only
cess is repeating (this could, for example, correspond to a rep- Frame 4 info in new one e-image
etition of prior aspect views of an aircraft). In this case, the (d) Frame 8
learning phase of the process modeling is complete; no more 11, = 0.005841. novel
vectors are added and no further eigenvector and eigenimage
calculations are performed. F,.k = 10.99891.0 0.001090]

keep one e-image only

4. APPLICATIONS AND CASE STUDIES Frames 1.3.8 in one e-image
Figure 1 shows the block diagram of our novelty processor. The Fig. 2. Sequence 1, low T, = 95% (one eigenimage).
novelty filter ij is the truncated series expansion of the current
image in terms of the eigenimage basis set (the present model was used as input to our novelty processor with Td = 0.002
of the process): and Tt = 0.95. In Fig. 2 the left figure is the present input

Kf- I VqK 1  ) image and the center figure is the novel data (with present image
k = 0* = . i b . (12) pixels different from ij by more than 8 gray levels). Miscel-

i _v(k, k) laneous data are shown on the right. For Fig. 2(a), frame 1, V
denotes its energy; nI = 1 (it is all new, since it is the first

The novelty detector with a threshold Td (- 0.001 typically) frame); F.1 = 1 (since there is only one eigenimage); and it
declares each frame novel if it contains enough new data. We becomes eigenimage 1. Frame 2 [Fig. 2(b)] has negligible new
form the difference Jxj - IjI of the input frame and the novelty information (n2 = 0.0018). The v2(l,1) entry is less than v2(2,2)
filter to show the new data in the present frame. In this novel because the energy in frame 2 is slightly larger than that in
image frame, we show pixels for which the difference xj - ijl frame 1. The novel image shows new data (people, movement,
is more than Tf (typically 8 out of 256 gray levels). Note that their old and new positions), but it is not sufficiently new. In
the new image is partly present in the first and other eigenimages frame 4 [Fig. 2(c)] the data are now sufficiently new (n4 =
and not necessarily in just the last eigenimage (with the least 0.0025) with respect to the eigenimage (frame 1) because the
significant eigenvalue). We use Fi.k (the fractional amount of people have moved more. The process model (eigenimage 1) is
information present in each eigenimage) to decide whether to updated, but no second eigenimage is needed because the amount
increase the number of eigenimages necessary to describe the of information in it is small (F4, 2 = 0.0006). Every few frames,
process. The amount of fractional information in the retained the process model is updated, but only one eigenimage is suf-
eigenimages should be more than the information threshold Tt. ficient to store all the information (since T, = 0.95). This con-

Figure 2 shows a selection from a sequence of 24 frames tinues until the person enters the foreground in frame 8 [Fig. 2(d)].
(128 x 128 pixels with 8 bits of gray scale) with two people Now and hereafter each frame is new, the process model (one
moving in the background and one in the foreground. The se- eigenimage) is updated, and only one eigenimage is sufficient
quence spans 24 s--one video frame per second. This sequence to satisfy Ti = 0.95.
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In frame 2 [Fig. 2(b)] several background pixels appear in Input Frame Novel Data First E-lmage
the novel image because of camera synchronization differences. Frame

The background behind the people and the people are both novel
as seen in the novel data image. The present image is declared
novel when enough pixels differ by enough to exceed Td =
0.002. No background pixels appear in the novel image of frame 3
(not shown) because the camera was synchronized with frame I
and therefore also with the current and only eigenimage, which
is the first frame. When frame 4 enters, it is found to be novel
and is combined with the current eigenimage to form two new
eigenimages (both contain information from frames 1 and 4).
The dominant eigenimage contains more than T = 95% (F4,1 =(b)
0.9994) of the information and therefore the other eigenimage 5
is discarded. In the next several frames [e.g., frame 8, Fig. 2(d)],
the energy in the first eigenimage increases (due to the added
data) and thus vs(l, 1) increases. The VIP values vi(l,m) shown
are all divided by the number of updates performed (i.e., the
number of novel frames found thus far). The people moving in
the background occlude the scene behind them. These people, W
as seen in the first frame [Fig. 2(a), left] are also in the eigen- 10
image when frame 2 enters. The pixels where they were in frame
1 (background in frame 2) as well as those where they are now
declared novel [Fig. 2(b), center]. These novel areas overlap in
Fig. 2 (center). In frame 4 (versus frame 1) the novel areas
overlap much less and thus more pixels are novel; the new
information exceeds Td and triggers an update. The background (d)
behind the people has been seen once in both of these areas and 20
thus the new first eigenimage contains both background and
people information in these areas. In subsequent frames, the
people in the background are not new enough to trigger an update
(since only the people are new and not the background behind Fig. 3. Sequence 2, higher = 0.9995.
them). It is not until frame 8 when the large person enters the
foreground that another update is done. While this person walks We now detail why the first eigenimage in the novelty filter
across the foreground, each frame is considered novel, but only contains the background information (and thus its novelty datum
one eigenimage was sufficient. is the moving object information). As subsequent novel frames

The data obtained (Fig. 2, center) show the new information are added to the process model, only a fraction of the new full
per frame and its location. When all frames are seen, we find image is added and thus the background is reinforced in each
that the system (the eigenimages) remembers moving parts with new image and the person is not reinforced and becomes lost
high contrast (e.g., parts of the person in the foreground) for (in the first eigenimage). Thus, as the Fig. 3 data show, the first
several novel frame updates, but it remembers lower contrast eigenimage gradually forgets the moving objects (Fig. 3, right)
moving parts (e.g., the background people) for fewer frames. because when new frames are added the background is reinforced
This occurs because the eigenimage is a linear combination of much more than are the moving persons. If desired, we could
the previous eigenimage and the input image when it is novel, modify the algorithm using the centered novelty image to add
These moving parts are averaged out after a few updates since new data and not background to the process model. In the se-
they are replaced by background in the new update frames. quence in Fig. 3, up to three eigenimages are kept. The lower

In Fig. 3 we show the results when we increase Ti = 0.9995 Td causes more updating than in Fig. 2. This results in a cleaner
and decrease Td = 0.001, using the same input sequence as in first eigenimage (since more updates, dominated by additions,
Fig. 2. This larger T1 forces the novelty filter to retain more reinforce the background earlier in the sequence) and better
information-more than one eigenimage. Figure 3 shows se- novelty data (a cleaner image of the moving person, not smeared
lected image frames and the output of the algorithm for this by the background) result.
sequence. The left image is the input frame. The center image The basic novelty filter and detector units can also be used
is the novelty date and the right image (if present) is the first to produce a novelty tracker that provides a model of the object
eigenimage; it is shown when an update occurs. Frame 2 [Fig. 3(a)] being tracked. Figure 4 shows the block diagram of a novelty
shows the moving persons (center) and as before the first ei- tracker. Each input image frame is fed to the novelty detector.
genimage is the first frame. In subsequent frames, the first ei- If the present frame contains novel data, we assemble all input
genimage is updated, but only one eigenimage is retained. Frame 5 pixels that differ from the process model by more than a given
fFig. 3(b)] shows that the dominant eigenimage now contains amount. This yields the novel object information (plus back-
only a little of the background people. The foreground person ground differences). We assemble the time history of these into
enters in frame 8. In frame 10 the first eigenimage [Fig. 3(c), a model of the object. To achieve this, we must register the new
right] contains only background. In all subsequent frames (frame 8, object information with the present state of the object model.
etc.), a second image is added; this eigenimage will contain the The registering is achieved by correlation and the last novelty
person and the first eigenimage will contain the background. detector box provides the object model desired. This procedure
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Fitroe) and Part Registration Filter Object

(PThcsol I (Object) Model

Fg. 4. Block diagram of a novelty backer.

Frame Input Novelrtbai
part object image of model

Mirage (roll)

Fig. 6. Test samples of aircraft images.

column in Fig. 5). As seen, the novelty tracker extracts the
moving parts of the object (the arms and legs of the person).

Our fourth test used five aircraft in different roll orientations
and no background. When trained by 36 images per class (I 0-deg
intervals), the algorithm keeps 2 to 3 eigenimages per class when
a novelty detector ni and filter were formed for each class (with
T1 = 0.98 and Td = 0.06). These five novelty filters were then
used on three new input images of each aircraft (Fig. 6) at
orientations not present in the training set. The outputs of the
five novelty detectors (one per class) are shown (Table 2, col-
umns 1 through 5) and the class estimate (smallest ni) is shown
in column 6. As seen, 100% recognition was obtained.

5. OPTICAL IMPLEMENTATION

The novelty filter algorithm in Table 1 consists of: (1) a set of

5g. 5. Novety tracker example. Ki VIP calculations, (2) solving a Ki x Ki eigenvalue problem,
(3) a set of decisions at each update step, and (4) Ki vector
additions when forming the new set of eigenimages. The trace

provides an unsupervised (or automatic) model of moving ob- estimate Ki is typically less than 10 and therefore the eigenvalue
jects or objects that have a different state (e.g., aspect view) problem can be solved, in real time, using a standard micro-
over the image sequence. processor. Potentially, the most time-consuming tasks are: (1) the

To test and demonstrate this novelty tracker, we used the calculation of the K VIPs (this involves KiN 2 multiplications
segmented moving foreground person data (32 x 64 pixels) and additions, where N2 - 64K) and (2) forming the new set
from the novelty filter of the image sequence in Fig. 3 as input, of eigenimages from the old set and the new input image (this
Column 2 of Fig. 5 shows the first five frames of this sequence. involves KjN 2 additions).
These are the outputs of the registration box in Fig. 4. The Figure 7 shows an optical implementation of the novelty
correlation of the novelty filter representation tj of the object processor that utilizes the parallelism of an optical processor to
(column 4) and the segmented 128 x 128 input is used to reg- compute the time-consuming VIPs and vector additions, while
ister the inputs (column i). Column 3 shows the novel data. solving the eigenvalue problem on a general-purpose micropro-
The object model consists of a set of basis function images (the cessor. We now detail this processor. The microprocessor con-
dominant eigenimage in the object model is shown in the last trols the data flow. An iteration of the algorithm is started when
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Table 2. Aircraft alssificatlon results.

Mig DC-10 Mirage Phantom Boe:ng-737 Classification Description SMe mr Y ' ' ' ' ' "
, .

0.7579 0.555S 0.7667 0.6644 0.0609 Boeing-737 Boeing-737 S (put2 planes

0.7169 0.5044 0.7136 0.6060 0.1721 Boeing-737 Boeing-737 45"

0.6393 0.4457 0.6W5 0.6003 0.3981 Boeing-737 Bouing-737 65*

0.6772 0.0606 0.3645 0.5106 0.5122 DC-10 OC-10 5*

0.5963 0.1530 0.3524 0.4036 0.5087 DC-10 DC-10 45*

0.5542 0.3015 0.5787 0.5303 0.4350 DC-I0 DC-10 85
Lt M 14 L Ms L4 Da

0.0694 0.5239 0.3765 0.2945 0.6935 Mig Mig 5.
FR. 7. Optcal novelty processor.

0o137 0.531 0o367 0.310 o06766 M Mi .45. is also binary, then the imaging system (L 2 and L,3) should ensure
0.1007 o.M 03501 0.4rr 0.6921 Mig u 8. that the average of the set of 4 x 4 pixels representing an input
0.5957 0.3074 0.0441 0.4167 0.7267 Mirage Mirage 5* M2 pixel illuminates one set of 4 X 4 pixels representing one
0.4594 0.4066 0.0931) 0.2789 0.7124 Mirage Mirage 45* value on modulator M3. Using a 10-kHz frame rate, 512 x 512

binary modulator for M2 and M3, we can thus compute the VIP
0.2981 0.54 0.9i2S 0.4499 0.6893 Mirage Mirage 85' of two 128 x 128, 4-bit images every 0.1 ms. This operation
0.4821 0.4190 0.2982 0.0533 0.6097 Phantom Phantom S* involves (128)2 integer multiplications and additions, and thus

this processor performs (128)2 x 2 X 104 = 325 million in-
0.3135 0.4267 0.3154 0.1657 0.6124 Phantom Phantom 45. structions per second. The detectors DI and D2 have to detect

0.2451 0.4591 0.3275 0.2337 0.5567 Phantom Phantom 85" a VIP value or eigenimage every 0.1 ms with 4-bit accuracy
and the LD must be capable of 4-bit 10-kHz operation. These
requirements can be met with state-of-the-art components.

a new input image is fed to the two-dimensional modulator M2, Assuming a frame time of if = 0.1 ms for the M2 and M3
which is illuminated by a plane wave with unit intensity origi- devices, all VIPs of the Ki eigenimages and the input image xj
nating from the laser diode (LD) Mi. This input image at M2 is are formed in Kitf. The new eigenimages are formed in another
imaged onto a second two-dimensional modulator M3 containing Kitf of time and the new novelty filter tj [Eq. (12)] in a final
one of the current sets of eigenimages. These eigenimages are Kitf. Thus, a new image can be input every 3Kitf plus the time
input sequentially to M3. Light leaving M3 (the point-by-point required by the microprocessor to solve the Ki X Ki eigenvalue
product of the two images) is focused by the computer-generated problem. Because Ki is typically less than ten, this processor
hologram (CGH) L4 onto a detector DI and the VIP of the input easily operates at video rates.
image (M2), and the present set of eigenimages (M3) is produced. Since the optical processor in Fig. 7 is an incoherent pro-
These VIPs are used by the microprocessor to determine the cessor, the modulator M2 can be eliminated and the imaging
eigenvalues in Eq. (9). The new eigenimages in Eq. (9) are then system L 2 - L3 can be used to image M3 onto DI or D2. The
produced by modulating the intensity of MI proportional to the VIPs are calculated as before, by sequentially feeding the prior
eigenvalue of the corresponding image (on M2) or eigenimage eigenimages to M3 and focusing the product of the MI input and
(on M3), respectively. (When M2 is used, M3 is transparent and M3 onto Di. To form the new set of eigenimages, the input
vice versa.) The weighted sums of these images are formed by image is first sampled by D2 (with a transparent M3) and stored.
L4 on the two-dimensional detector D 2 where they are summed The current eigenimages are then sequentially fed to M3, and
(by time-integration) to form sequentially the new set of eigen- the sampled input image is fed to M2 or M3. These data are then
images. This completes one iteration of the algorithm, illuminated by a weighted MI value and summed onto D2.

This architecture also has the capability to preprocess the
input image by using a frequency filter in the Fourier plane 6. CONCLUSION
between the two imaging lenses L2 and L3. Two uses for this We have advanced a new algorithm that optimally processes
are (i) to low-pass filter the input to average out synchronization time-sequential imagery. This algorithm detects novel input data
deviations or platform vibrations and (2) to high-pass filter the and discards data with negligible new information. We presented
input to emphasize edges in the input. These operations are useful data illustrating the use of this algorithm in novelty detection
in different applications (i.e., when edges of images are of and filtering, segmentation, background independent modeling,
concern), data classification, and tracking. We also advanced a real-time

The two-dimensional modulator M3 should be fast enough to optical implementation of the novelty detector and filter algo-
allow the serial computation of K eigenimages at the frame rate rithm.
of M2. Fast binary modulators with frame rates of more than
10 kHz are available. t9 Typical input imagery has a dynamic 7. ACKNOWLEDGMENTS
range of 4 bits and can thus be half-toned on a binary modulator The support of this research by a grant from the Strategic Defense
using 4 X 4 cells at M 3 to encode a single pixel value. Because Initiative Office of Innovative Science and Technology, moni-
the multiplication of the two images leaving M 3 is focused down tored by the Office of Naval Research, is gratefully acknowl-
to a point, simple half-toning schemes are sufficient, since all edged, as is the support of NASA Ames Research Center. We
artifacts introduced by the half-toning will be at frequencies other also acknowledge Etienne Barnard for fruitful technical discus-
than dc (where we detect the output). If the input modulator M2  sions.
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CHAPTER 3

"EXTRACTING INPUT-LINE POSITION FROM HOUGH TRANSFORM DATA"

J. Richards and D. Casasent



Extracting input-line position from Hough transform data

Jeffery Richards and David P. Casasent

The Hough transform (HT) detects lines in an input but not their location. We describe a new way to
determine the position of a line from HT data. The line position information is extracted from the shape of
the HT pattern around the HT peak. Results are shown illustrating this algorithm on single- and multiple-
line input images

I. troduction line in (x, y) coordinates with center (midpoint) coor-
The well-known Hough transform1 (HT) maps input dinates (x., y,). The center coordinates are used to
lines to peaks. The position of a peak in HT space define the position of the input line. Our present
indicates the orientation and distance from the origin purpose is to determine (x,, Yc) from the HT peak data.
of an input line. The intensity of an HT peak indi- The problem in determining (x,, Yc) from just the
cates the length of an input line. However, the loca- HT peak data is that any (z, y) input lines on the same
tion of a HT peak does not uniquely identify the posi- contour will transform to a HT peak at exactly the
tion of an input line; rather it defines only the contour same location. For example, the two lines A and B in
that the line lies upon. The exact position of an input Fig. 1 both transform to a HT peak at the same 0 = 90*
line is encoded in the shape of a HT peak. We describe and p =20 location. However, the shape near the HT
how the input-line position information can be ex- peak is different for each of the lines. Figure 2 shows
tracted from HT data. the HT's for lines A and B, respectively. The informa-

In Section II we discuss the theoretical formuation tion about the location of the input line is contained in
of the problem. In Section I we show digital simula- the slope of the envelope of all the sinusoids crossing
tions illustrating how the line-position information is the HT peak at (900, 20). Note that the envelopes of
extracted from the HT data. Single-line and multi- the sinusoids in Fig. 2 approach (00, Po) with different
ple-line input images are both presented. In Section slopes in the two HT plots shown. We now describe
IV we discuss how this algorithm is implemented opti- quantitatively how to extract the midpoint location of
cally, and in Section V we summarize our conclusions, a line from the HT data.

Assume that an input line has a center or midpoint
I. TheorsUcal Basis (xe, yc) and that the line maps to a HT peak at (%, po).
The normal HT mapping from input coordinates (x, y) Our objective is to determine the midpoint of the line
to HT coordinates (9, p) is given by from the HT data. We now show how this positional

information is computed from the average slope of the
pZ 00 + yuin 9. (1) envelope of the sinusoids at (8., p.). The point (Xe, yc)

Each point (x, y) on a line thus maps to a sinusoid in maps to the sinusoid:
HT space defined by Eq. (1). The input line trans- p ysinO (2)
forms to a peak at (0., p.) in HT coordinates, where 0o is
the contour that the line lies upon and p, is the normal in (0, p) Hough space. If we take the derivative of Eq.
distance of the contour to the origin. Assume an input (2) with respect to 0, we have

X, + YCoe. (3)

Equation (3) can be generalized for any input point.
The authors are with the Carnegie Mellon University, Depart- The slope of a sinusoid that is due to input point (x, y)

ment of Electrical and Computer Engineering, Center for Excellence is
in Optical Data Processing, Pittsburgh, Pennsylvania 15213-3890. dp

Received 16 May 1989. -- sine+ycos9. (4)
0003/6935/91/202899-07$05.00/0.
o 1991 Optical Society of America. We form the HT and note that there is a HT peak at
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y average several slope measurements Ap/Af together
(the number of measurements to be averaged is set by

-- 20 the 0 window size) to minimize errors owing to the
20 digital sampling of the input images and the limited

B resolution in the HT plane. A window in p is also
-- 10 necessary when there are multiple lines in the input to

reduce the interfering effects of the sinusoids from
different input lines on the slope calculations of lines

X to which they do not belong. The maximum size that
the p window can be is one half the p distance between
the two closest HT peaks. The 9 window size is set by
the 9 distance over which valid slope calculations can
be made (and also by the minimum 0 distance between
the two closest HT peaks). Empirical results (Subsec-

Fig. 1. Ls that transorm to theame HI location psa tion lILA) indicate that typical 0 and p window izes
are 50 to 100 and 7 to 15 pixels, respectively (for the HT
resolution used, AO 10 and Ap - I pixel and a 100 X

(0, p). We then evaluate Eqs. (1) and (4) at (0, po). 100 input).

We now have two simultaneous equations, which we
solve for (x, y). This solution gives the desired un- A. Sfope-kdercept Hough Trauorm Extueuml
knowns (x, Yc) as The above discussion considered the use of a normal (0,

X -CoS d e . p) MT space. A similar derivation can be developed
for the slope-intercept HT space. In a slope-inter-

Ssin 0 + coo 0., 6 cept HT, the HT coordinates are (c, m) where c is they
0podn+ (6) intercept of the line and m is the slope of the line.

Although this mapping is not typically used since m is
where dp/dO is evaluated at 0 = 90. The HT peak unbounded, optical implementations have been sug-
location and hence P. and 09 are known and are thus gested for it.2 In a slope-intercept HT, every input
substituted into Eqs. (5) and (6). The term dp/dO is point (z, y) is mapped to a line:
the change of the sinusoid in p with respect to a or, C=-ex+y. (7)
effectively, the slope of the sinusoid as it crosses 0,
From Eq. (3) and Fig. 2 plus Eqs. (5) and (6), we see Collinear points map to lines in the HT space that all
that the slope at (00, Po) varies with (zc, yc). Since a intersect at a single point, causing a HT peak. Differ-
line has many points on it, there will be many sinusoids entiating Eq. (7) with respect to m for the point (zc, yc),
crossing at (0. p.). Each input point on the line will we can solve for the location of the midpoint as
map to a sinusoid that crosses (0., P.) with a slightly dc
different slope as seen in Eq. (4). Hence, in Eqs. (5) Z, - (8)
and (6) we use the average slope of the HT peak, since
the midpoint corresponds to the middle or average ye- c-rm- (9)
slope of all these sinusoids. The average slope of the
envelope of the sinusoids dp/d9 is computed by finding Therefore from Eqs. (8) and (9) we see that the posi-
the average p location at several 0 slices around 0, and tional information for input lines can be extracted
from this determining the change (Ap/AO) in p with from slope-intercept HT data in a manner analogous
respect to the changes in 0. If general, a window in 0 is tothatused for the angle-normal HT data as in Eqs. (5)
used, since there is only a limited AO range over which and (6). However, since angle-normal HT data are
the slope measurements can be accurately made. We more commonly used (and since slope-intercept HT

P P

20. 20--

Fig. 2. Hough transform data for the lines in Fig. 1.
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20

--

- Fig. 4. Digital inputs to extract line position.-" D

Fig. 3. Input lines for position simulation. is -28.3. The actual slopes, computed from Eq. (3),
are 28.3 and -28.3, respectively. Substituting these
values into Eqs. (5) and (6), we correctly compute the

data are indeterminant for vertical lines due to their centers of the lines to be (10, 30) and (-30, -10),
infinite slope), we used only the (0, p) mapping in all respectively.
our simulations. The remainder of our simulations are performed

digitally (not analytically) with an input image resolu-
. Sknulations tion of 100 X 100 pixels (origin at the center) and with a

HT sampling of 1° and I pixel in 0 and p, respectively.
A. Results for One Input Ufne and One Hough Transform First let us consider the practical case in which the only
Peak information that we have is the location of the two-
As our first simulation example, we consider the case in dimensional HT peak. We must now determine the
which there is only one line present in the input and its average slope of the HT around this peak. We use the
center varies. When only one line is present, it is two lines shown in Fig. 4 (these are the digital repre-
easier to compute the average slope dp/dO, since all sentations of lines C and D in Fig. 3). The HT compu-
sinusoids contribute to the same HT peak. We use tations were done successively, i.e., only line CorD was
this example to show the positional accuracy attain- present, and there was only one HT peak present in
able. We then extend our HT position algorithm (the each case. The HT's of the lines are shown in Fig. 5.
subject of this paper) to the case of multiple input lines Note that the HT peaks are at the same location, but
in Subsection IT.B. As our initial example, we use the that the patterns around the two peaks are different.
lines shown in Fig. 3. Lines C (solid) and D (dashed) The envelope of the sinusoids crossing the HT peak
each lie on the same contour (y - x + 20), each is of can be used to defie the locations of all points on each
length 56.6 units, and they do not overlap. The center input line and hence (x,, Yc) of each line, since each
of line C is (10, 30), and the center of line D is (-30, input point maps to a sinusoid that crosses the same
-10). Both lines transform to a HT peak at (9, p) - HT peak location with a different slope. The average
(135° , 14.1). The following analysis was performed slope Ap/Af of the envelope will denote the average (or
analytically so digital sampling errors and resolution midpoint) x, and y, of the input line from Eqs. (5) and
limitations would not distort the final results. (6).

To show the accuracy with which the position of the There are many different algorithms that could be
line can be extracted from the shape of the HT peaks, used to extract the slope (p/A) from the HT data in
we assume that the center of each line is known. We Fig. 5. The algorithm that we use is as follows. We
plot the sinusoid for this point, and we measure (Table first find the average position (pa,) of all the energy in
I) the Pc and pD points (for lines C and D) at which each of seven 8 slices on one side of 0, We used seven 0
these sinusoids cross five different 0 slices on one side slices for the purpose of averaging several slices to
of the true 9 - 135* slice. From these data, we calcu- minimize errors owing to the limited resolution of the
lated the slopes Sc - Apc/dA and SD - £PD/M shown digital HT. For our data the HT plane was sampled in
in Table I. From Table I, we concluded that the p in 1-pixel units. With a finer p resolution, we could
estimates dp/dO for line C is +28.3 and dp/d9 for line D average fewer 9 slices. For our resolution and when

TaMe L Computl NT P ak Slops

* PC PD Sc SD

135 14.1 14.1
134 13.6 14.6 28.3 -28.3
133 13.1 15.1 28.3 -28.3
132 12.6 15.6 28.3 -28.3
130 11.6 15.6 28.3 -28.3
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only one line is present, negligible differences result if a
50 to 100 window in 9 is used. Beyond 10° the sinus-
oids are less linear and the slope estimates degrade. If
the 9 window is chosen on both sides of the peak HT
point, the results are identical. We also do not esti-
mate the slope in the 9 slice next to the HT peak (V
from the HT peak), since this slope estimate is noisy
because of the finite resolution, resulting in a blurred
HT and not a single 1-pixel-wide peak.3 For each 9 Fig. 6. Input for multiple HT peak analysis.
slice we calculate Ap = P. - Po and A - 0 - 0. where
(8o, po) are the coordinates of the HT peak. For each 9
slice we calculate the slope Ap/A9, and we then average
these slopes to obtain our estimate of the slope S - dp/ and -28.3 (Table I), with errors owing to the digital
dO of the sinusoid associated with the center of the line. sampling of the input line and the finite HT space
The digitally calculated peak location is (0, Po) - resolution used. Optical results will be more accu-
(1350 , 14), which agrees with the exact (1350, 14.1) rate.3 From the slopes in Table H and Eqs. (5) and (6),
value within our finite resolution. The HT peak in- we computed that the line centers were at (10.1, 29.9)
tensity is 40 (the number of points on the line) as and (-29.8, -10.0). These are within 0.2 pixel of the
measured from the digitally calculated HT. This does correct values of (10, 30) and (-30, -10). This repre-
not agree with the actual line length of 56.6 because of sents excellent accuracy and is better than the input or
digital sampling effects, which have been reported pre- the HT resolution.
viously.3 This is of no concern in the present work.
The average p location for each of the seven different 0 B_ Restilts for Muple Unes and Muliple Houg
locations was measured. The resultant Ap - p., - po Transform Peaks
is given in Table I, together with the S - ip/AD value In our example in Fig. 4, the'average slope of the
calculated for each 9 slice. Average slope S., (aver- envelope of the sinusoids was easily computed because
aged over these seven values) and the center location, there was only one line in the input, since all the HT
calculated from Eqs. (5) and (6), are given at the bot- energy was directed to one HT peak and no other
tom of Table H for each line. The estimated slopes are sinusoids resulting from other lines were present that
within 0.1 pixel/rad of the actual slope values of +28.3 would affect the average slope calculation. Since moat

TAlM U. m 0-l Isp..ea mHT Dds In PIg.

UDeC UneDb

U AP rad) AP red)

Sa, 28.3 pie/rad. LOC (10.1, 29.9) S, 282 pizeb/rad, LOC (-29.8, -10.0)
133 0.52 29.6 133 -0.47 -26.7
132 0.51 29.0 132 -0.48 -27.2
131 0.50 28.6 131 -0.49 -28.1
130 0.49 28.2 130 -0.50 -28.4
129 0.49 27.8 129 -0.50 -28.6
128 0.48 28.6 128 -0.51 -29.0
127 0.47 27.2 127 -0.51 -29.0

LOC, midpoint locations.
b HT Peak (135-, 14), peak intensity 40.
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(a) (b)
Fig. 7. (a) HT of trimgle input. (b) Edge-enhanced HT of triange to ahow the envelope of the sinusoids.

real-world applications will have multiple input lines Thus, when multiple lines and HT peaks are
present, we now present simulation results that show present, we locate (0, p) for each peak, form the two-
how the presence of multiple HT peaks still allows us dimensional 3 3 Sobel of the HT pattern in a window
to extract the input-line center position associated around the peak, determine the upper and lower
with each HT peak. bounds of the sinusoids around each HT peak, and use

The input that we used is the triangle shown in Fig. this to set our p window. Typically, we use a smaller
6. The HT of Fig. 6 is shown in Fig. 7,d, which shows window in 0 (50) when multiple lines are present. For
three MT peaks corresponding to the three input lines, the present data, the p window used to calculate p.,
Peak 1 is at (00, 30) and corresponds to the vertical leg, was h15 pixels (this is also, by coincidence, half of the
peak 2 is at (450, 0) and corresponds to the hypotenuse, distance between the p peaks). We used five 9 slices of
and peak 3 at (90% 30) corresponds to the horizontal the edge-enhanced HT data since the HT pattern was
leg. The HT peak at the far right in Figs. 7(a) and 7(b) reasonably localized and definable at this 0 distance
at (180", -30) is the same as the (00, 30) peak. Be- from the MT peaks. The envelopes of the sinusoids
cause the HT energy is not due to one input line, we around each HT peak vary with the location and length
cannot compute the average sinusoidal slope as easily of the lines (see Fig. 5), and the sinusoids from one
as noted in Subsection ITI.A. In the data of Table 1I peak can contribute to the HT pattern about another
with Figs. 4 and 5, Pa, was calculated by averaging over peak, which affects our p., calculations. Thus, we
all p values. When multiple input lines are present (as found it necessary to estimate the extent of the enve-
in Fig. 6), a p window is needed (so that sinusoids that lopes around each HT peak tu obtain an accurate p,
are due to different HT peaks do not distort the slope estimate at a given 0 slice near 0, Using ap window of
estimates at different p points). We detect the MT *15 pixels for each of five 9 slices, at 1 intervals, we
peaks and can use the differences in their p and 9 calculated p.,-and Ap for each slice, using the edge-
values to set bounds on these windows. For the enhanced HT data. We then calculated the slope Ap/
present case, the HTpeaksoccuratp - Oandp -30, A for each 0 slice and the average slope (Sj)as before.
from which we see that the maximum p window that Table I shows the results obtained for the data in Fig.
we can use is *15 pixels to calculate p., for different 0 7(a). The correct midpoint locations for the three
slices. lines are (30,0) for the vertical leg, (0,30) for the hori-

To obtain better p window choices, we note that zontal leg, and (0,0) for the hypotenuse. From Table
there are envelopes for the HT sinusoids around each MI we see that the maximum error in the computation
HT peak. We find the envelope extents by forming of the midpoint from the HT data is 1.0 pixeL This
the two-dimensional gradient of the HT pattern in the slightly increased error (compared with the case in
window around the HT peak. This allows us to locate Subsection HI.A) is due to the effect of the HT energy
the upper and lower bounds of the envelopes of the due to other peaks, which alters the p, computation
sinusoids around each HT peak. The gradient en- for each HT peak.
hances the sinusoids associated with the envelopes and As an additional test, we applied our algorithm to
reduces the effects of the intermediate sinusoids (as the four multiple-line images in Figs. 8(a)-8(d).
well as reducing the effect of the sinusoids from other These images have four to six lines in each with varying
HT peaks). Figure 7(a) shows that a different pattern HT peak separations The HT patterns for these four
is present around each HT peak. Thetwo-dimension- inputs are shown in Figs. 8(e)-8(h). The line midpoint
al Sobel edge operator applied to the HT produces the was calculated from the HT data for each line in all
pattern shown in Fig. 7(b); (the boundaries of the four images, and the largest error obtained in the mid-
sinusoids are clearly seen about each HT peak, and point calculations was <2.5 pixels. Although this is
hence the p windows to be used are easily obtained), not meant to be an exhaustive test, we include it to
We found that a two-dimensional edge-enhancement illustrate that other tests have been performed and
operator performed better than a one-dimensional that good accuracy is possible in the estimation of line
gradient operator in p for each 9 slice, positions from HT data even when multiple lines and

10 July 19 / Vol. 30. No. 20 / APPLEDOPTICS 2903



(a) (b) () (d)

(e}0)tO

f. & Additioal test inputs and tbeir HT patiern.

peaks are present. Table IV lists the minimum spac- can be obtained. Since the HT sinusoids from both
ings in p and e between the HT peaks for these four lines overlap in HT space, derivative estimates will be
inputs. Using the Sobel of the HT patterns and the poorer because of noise, and we expect reduced accura-
HT peak locations, we list in Table IV the p and 0 cy.
window sizes chosen for each case. The same 0 and p Tests of more complicated images and with test
window sizes were used for all four inputs to illustrate patterns are needed to quantify how the complexity of
that our algorithm can be used for different inputs the input image affects results. Initial generalizations
without changing the window sizes. These window that appear reasonable are now advanced. When we
sizes were chosen to accommodate the close HT peak restrict the 9 (or p) window to be approximately half of
spacings in Fig. 8(b). If different window sizes were the smallest HT spacing in 0 (or p) of two HT peaks, we
chosen for each of the four inputs, the accuracy of the expect an accuracy of better than 2.5 pixels (if the
results for Figs. 8(a)-8(d) would be improved (howev- windows used are at least :8 pixels in p and 5° in 0).
er, the line position was still accurate to within 2.5 Thus (from Table V) more complex images with lines
pixels with the window sizes used). that differ in angle by 80 and in separation by 16 pixels

If two collinear lines are simultaneously present, the should yield such accuracy. More extensive tests,
HT edge enhancement should indicate two envelopes variations in window size, and optical tests (to reduce
and hence two lines. Further tests are needed to quan- sampling effects) are needed to confirm these trends
tify the accuracy with which the locations of both lines and to quantify such issues.

TaNe E. Cpsd lopes fm NT s oT P1F. 7(br
Vertical I Horizontal L Hypotenusd

S., 0.406 pizel/tad, S., 0.930 pixel/rd, S., 1.01 pixels/rad,
LOC (30.0,0.4) LOC (-.0.9,30.0) LOC (1.0, -1.0)

2 0.03 88 0.03 43 -0.03
3 0.00 87 0.02 42 0.01
4 0.00 86 0.01 41 0.04
5 -0.02 85 -0.01 40 -0.04
6 0.02 84 0.03 39 0.02

* LOC. midpoint locatiom.
b Pek (0, 30).
SPeak (900. 30).

d Peak (450, 0).

TaW Iv. Wr Pea SOpebp &M p &M 0 Wwlaw Uhm

Closest p Closest 0 p Window a Window
Figure spacing Spacing (deg) Used (pixels) Used (pixels) (deg)

8(e) 50 16 *8 5
8() 16 8 *8 5
9(g) 25 45 *8 5
8(h) 33 90 *8 5
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IV. OpUcal riW pa ft nh 
N U 

L PE
An optical realization of the HT should be more accu- INPUT HTSL
rate than digital simulations because optics provides CALCULATION

interpolation. 3 The optical HT system that seems
most applicable is the rotating prism architecture." Lote peaks LOCATIONS

In this system, a two-dimensional spatial light modula- (number of of each line

tor is used to modulate the input light and a rotating lines present,

Dove prism is used to rotate the input. This is fol- e loc)
lowed by cylindrical and spherical optics to integrate Fig. 9. Block diagram of the algorithm to extract line position from

the input to a one-dimensional slice. A 0 slice of the the HT data: loc, midpoint locations.
HT corresponding to the rotated orientation of the
input is thus formed. Multiple 0 slices of the HT can
be sequentially formed by rotating the Dove prism and
sequentially reading the linear detector into a two- data. A block diagram of the algorithm is shown in
dimensional buffer. In this architecture, the attain- Fig. 9. Several simulation results were presented
able HT 9 resolution is limited only by the stepper- showing that the line position can be determined to
motor control of the Dove prism, which is typically8 at within 2.5 pixels (for 100 X 100 pixel inputs), even
least 0.1g. Hence extremely accurate calculations of when as many as six multiple input lines are present,
the average slope of the sinusoids for each HT peak and within I pixel or less when only a few input lines
could be made. With a rotating prism architecture, we are present. In general, the accuracy with which the
would form the HT twice. On the first pass, the entire line position can be determined is a function of the
two-dimensional HT would first be searched quickly number of input lines, their separation (in p and 0), the
with coarse resolution to determine the location of the resolution of the input images, and the resolution of
HT peaks. The second pass would use fine 0 steps the HT plane. The accuracy can be improved with
around each HT peak. The p data at each of these 0 increased 9 and p HT plane resolution and by use of an
slices would be used to compute pe and the average optical HT (which provides interpolation). A HT res-
slope (S.v) of the envelope of the sinusoids for each HT olution of 1V in 0 and 1 pixel in p and 100 X 100 pixel
peak and hence the center of each line in the input. inputs were used in our simulations. The algorithm is

In product inspection application3 ,6 the 9 positions simple and can easily be implemented in either a digi-
of the HT peaks are often known a priori, and only tal or a hybrid optical-digital system.
several HT slices at different 0 are needed. In these
cases, a computer-generated hologram7 (CGH) would The support of this research by Philip Morris, Inc.,
be used to generate only the HT slices associated with and the Strategic Defense Initiative Office of Innova-
these HT peaks. To locate the position of each line, tive Science and Technology monitored by the U.S.
the CGH would also generate several 9 slices with fre e Office of Naval Research is gratefully acknowledged.
resolution clustered around each 0 peak. Because of References
the current limitations on the number of 9 slices that
can be accurately generated with such a HT CGH, this I. P. Hough, "Methods and means for recognizing complex pat-

terns," U.S. Patent 3,069,654 (December 1962).
technique cannot easily produe the entire MT to very 2. P. Ambe, S. Lee, Q. Tian, and Y. Fairman, "Optical implements-
fine 9 resolution (a CGH that samples the HT at 36 tions of the Hough transform by a matrix of holograms," AppL
values of 9 over 1800 every 50 has been demonstrated7). Opt. 25,4039-4045 (1986).
The use of e-beam recorded CGH's can provide suffi- 3. D. Casaent and J. Richards, "An optical processor for product
cient resolution for such product inspection applica- inspection," Proc. Soc. Photo-Opt. Instrum. Eng. 850, 66-80
tions, in which we wish to extract the positional infor- (1987).
mation of each line without a priori information on the 4. G. Gindi and A. Gmitro, "Optical feature extraction via the radon
peak locations. tmsform," Opt. Eng. 23,499-56 (1984).

5. W. Steier and R. Shori, "Optical Hough transform," AppL Opt.
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Abstract

Point targets (with size equal to the point spread function (PSF) of the detector system) in star
field, earth and cloud backgrounds are considered. We consider target detection from the background
(using two frames of data and allowing the use of simpler sensor systems), target location estimates
of the target's position to subpixel accuracy (allowing the use of fewer sensor elements with better
sensitivity and cost), and track initiation (to confirm targets to be passed to a multi-target tracker).
Real background sensor data and equivale..ly real targets are used and optical lab results are provided.

1 Introduction

We consider the SDI (and ADI) target acquisition issues of the detection and tracking of objects in
midcourse when a strong background is present. We use simulated correlated noise data to model the
background in a downlooking scenario and a real starfield background (with various practical sensor
errors) for the background in an uplooking scenario. In both cases, our algorithm can accomodate
background shifts between frames (due to platform stability in an earth based or low orbit satellite
sensor). The uplooking sensor data used is from a telescope (our algorithm can be equally applied to
other sensors). The sensor can be fixed (staring at a given field of view (FOV) of space), looking for
moving targets, scanned (after a given time interval) to a new region to cover a larger FOV in time
sequence by sections, or it can be gimbaled to center on a moving target, and it can have instabilities,
etc.

Section 2 describes our databases. Our detection algorithm (Section 3.1) uses an optical corrrelator
operating on sequential frames of data to estimate background shifts to subpixel accuracy [1]. We
then interpolate one frame and difference successive frames to detect moving targets and suppress the
background. We refer to these as difference frames. By combining a number of such difference frames
into a composite frame, we can apply an optical Hough transform (HT) for track initiation [2](Section
3.3). We can also apply our target location algorithm to the difference frame to obtain estimates of
the target position to subpixel accuracy (Section 3.2) allowing the use of simpler, more sensitive, etc.
detectors. Section 4 presents initial simulation and optical lab data showing the detection of targets
below the background noise, plus shift estimates and target location to subpixel accuracy, and HT track
initiation optical lab data. Figure 1 shows the overall system.

Much prior work exists in this area. Prior work on the detection [1] and track inititiation [2,3] algo-
rithm considered only a downlooking scenario and simulated data and did not consider optical processor
accuracy or subpixel target location. Other correlation techniques have employed a matched spatial filter
(MSF) of a point target using local (sliding window) estimates of the background statistics [4]. This
MSF has low processing gain (we correlate on the stronger background and achieve better background
suppression and detection of weaker targets). For the starfield background case, the background statis-
tics will be poor and hence our algorithm appears to be preferable. An MSF of a sequence of points (a
line) has also been considered [5]. This uses multiple frames as we do, however we use a HT rather than



a MSF and apply it after background suppression (thus we can detect weaker targets in stronger back-
grounds). Recent surveys [6,7] of background suppression and detection techniques (frame differencing,
LMS adaptive filtering, and nonlinear spatial differencing) did not consider frame differencing methods
that first register the frames (as we do). Our method should yield the best (nearly ideal) results.

An acousto-optic (AO) architecture to achieve the shift/interpolation/differencing has been described
and simulated [8]. Due to lack of funds, we did not implement it; rather we optically implemented only
the correlator registration portion of the processor.

Much target location work exists. We use a central moment estimator although other techniques for
line or edge detection in machine vision [9] may be useful. The moment estimator is biased, but as we
show the mean error in our estimates is small and it performs well.

2 Databases
2.1 Uplooking Scenario

We use a real starfield background obtained from a 48 inch F/2 telescope with an image intensifier using
a Si detector (this can be a scanning sensor). These frames of data are 512 x 512 (we use the central
256 x 256 region) from a 12 March 1974 launch tracking a Molniya Soviet satellite at a frame rate of
30 frames/sec. We used 8 frames of data from this sequence (8/32=1/4 second of data). The target is
a point source (for a geostationary satellite, its range is very large, 36,000 kin). For this telescope with
a 12.8 x 12.8 mm detector array its angular FOV would be 0.30 x 0.30 or 189 x 189 km at a range of
36,000 km) with one pixel out of 512 x 512 having a target resolution of = 370 meters. This real data
has considerable variation in the mean per frame over the 8 frames (the mean varies by approximately
30 levels out of 256) which is large compared to the variation in the pixel values (= 80) within one
frame. This is due to atmospheric, intensifier, etc. effects. We thus formed and used zero mean data to
overcome this variation.

The mean of the sensor data varied by about 12 levels (out of 256) for odd/even rows (odd/even fields)
and was approximately the same for all even and for all odd rows within one frame. To overcome this
problem, we spatial filtered the data (in preprocessing) by removing the spatial frequency corresponding
to the row spacings. This can easily be implemented on-line in the optical correlator used for target
detection. Another real data effect observed was dropout of some pixel values (they went to 0, black).
This occurred at random pixels in a frame (8-10 over 8 frames) and in all cases the pixel was dead for
only one frame. The targets and stars axe also generally blurred more in the horizontal direction than in
the vertical direction. Finally, the star background intensity varied between frames (due to atmospheric
and noise effects). Our algorithm works in the presence of all such effects. Fig. 2 shows two frames
(frame 1 and 8) of star background. As seen, the frames appear to be quite well registered. Simple
differencing will suppress much of this background, but our algorithm allows for frame jitter. There are
about 25 strong stars per frame varying in strength from 80 to 180 (out of 256) with a mean (over the
8 frames) of 88. Table 1 summarizes our starfield background data.

2.2 Downlooking Scenario

As noted elsewhere [1,10], the background noise in this case is modeled as correlated noise (CN). with
different means and correlation lengths for different cloud and earth levels. Superimposed on this is
uncorrelated noise (UCN) to model the sensor. We use simulated data for this case. For our CN
downlooking tests, we use 128 x 128 samples. The CN data had correlation coefficients p., = pu = 0.76
and a variance o'=0.78 (thus CB = 0.88 and 3 aB = 2.65). The unit target inserted had a 3a extent
of ±1 pixels (point target) and the target pixel mean was mT = 0.25 (since it is typically split between
4 detector pixels due to the target spatial variance T = 0.33 used). Thus SNR1 = 0.25/2.65 _ 0.1 or
-10 dB (amplitude). We used 32 frames of CN background with a single target moving from top left to
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detected 48 inch F/2 telescope with image intensifier
targets 512x512 (central 266x256 used)

subpixel 30 frame/sec rate, 8 frames used (1/4 second)
input detection location target 12 March 1974 Soviet Molniya satellite tracked
frame estimator location Geostationary (36,000 km range), point target

Mean varks (30 out of 256) between frames
optical _= =o zero mean data

correlator track target Mean varies by = 12 between odd/even lines
initiator tracks =* spatial filter (block row SF)

8-10 pixels drop to 0 (black) for 1 frame (randomly)

hough transform Our algorithm handles this
All data blurred more horz than vert (= 2 pixels)
25 stars/frame, 80 to 180 in strength (mean=88)

Table 1: Star field background data (uplook-
Figure 1: System block diagram ing scenario) - Real data

a
Figure 2: Frame 1 (a) and 8 (b) of real star field backgrounds with a moving target present.
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bottom right. Fig. 3 shows isometric views of two of the input frames. No target can be seen, however
our algorithm can detect it as we show.

(a) Input frame 1 (b) Input frame 2

Figure 3: Isometric views of (a) input frame 1 and (b) input frame 2

2.3 Target Models

From the targets in the real starfield database described in Table 1 and from other real target images
(of a dim target) in Fig. 4 (enlarged), we measured the target pattern and found that a good model for
the target PSF is a 2-D Gaussian

t~x, y) = E. exp[- (72 + Y 2)]
'(2 " '2) (1)

where E, is the energy of the nth target and a (which determines the number of pixels on the target) is
a function of the target size, F/#, A, and detector pixel size. We used a2=0.5. A 2a range with a2 = 0.5
thus means that a target covers = 3x3=9 pixels with most target energy in 1 to 4 pixels. We consider
finite detector area in the target images used. To provide more vivid results and to demonstrate the
ability of our algorithm to handle multiple targets in parallel and to allow different target strengths,
we inserted 6 such real targets into each real starfield background frame (Fig. 2). Between frames, the
targets moved in straight lines with at least a 2 pixel shift (horizontal and vertical) between frames. We
varied the strength of the 6 targets to make two of them equal to and most less than the largest (180)
and average (88) starfield background pixel. Table 2 lists these data: the total target energy (the sum
of the 9 target pixels in the PSF of the telescope used), and the average target peak pixel value for each
target (averaged over 8 frames, this should be compared to the average (over 8 frames) peak star value
of 180). SNR', is column 4 divided by 180. A similar real point target (with a2 = 0.5) was inserted into
the CN background data (downlooking scenario) of Fig. 3.

3 Algorithms
3.1 Target Detection

For the downlooking scenario, we model the background as a Gauss-Markov 1 random process with a
covariance function

R(-r.,,ry) = i B 4exp(r. Iln p. + 17T.1IIn p4) (2)
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Target Total Avg. peak
number energy pixel value SNRJ

1 750 205 1.14
2 500 181 1.01
3 250 92 0.51
4 125 - 40 0.22
5 63 23 0.13
6 33 11 0.06

Table 2: Data for the 6 real targets in

Figure 4: Enlarged dim target (real data) the starfield background.

where the correlation coefficients satisfy I[Pz < 1 and Ipsj < 1, a is the background variance, and T"

and r. are the lag variables in the covariance function.
The 1-D cross-correlation function between the background in the two frames is

C(x) = C,,VABI (3)

where Cp is the peak correlation value and A B is the subpixel background shift between the 2 images.

From only three samples of the cross-correlation function C(x) at known x values, we can eliminate CP
and px and solve for the shift AB using the unbiased estimator

AB = ln[C(-1)/C(1)]/2ln[C(2)/C(1)] (4)

Thus, from the cross-correlation of two frames, we can estimate AB independent of Cp and p. A 1-D
analysis suffices since R is separable. We use 3 samples in x and 3 samples in y as in (4) to estimate
the shifts from the optical cross-correlation of two sequential frames. We then shift one image frame by

AB and interpolate it (we use a bilinear interpolation function). Finally we subtract the original and
the shifted/interpolated frames. This registers the background, suppresses it, and extracts the subpixel
targets. Fig. 5 shows the block diagram of this algorithm.

estimate shif

two optical shift
sequential cross interpolate difference frame

frames correlation 3 samples AB difference (background suppressed)[, (target detected)

Figure 5: Target detection algorithm to estimate background shift AB and suppress the background.

For the uplooking scenario, several shift estimation algorithms were tested including. exponential curve
fitting (as used for the downlooking CN scenario), parabolic and Gaussian curve fitting, and centroid
methods. The parabolic estimator

AB = [C(-1) - C(1)]/2[C(-1) + C(1) - 2C(O)] (5)

where C(n) is the cross-correlation sample at location n relative to the peak pixel, provided the best
BSF. The Gaussian estimator produced almost identical results. We note that the parabolic estimator
uses a total of 5 samples (the exponential estimator uses 6), since the C(O) sample is used for both

horizontal and vertical shift estimates.
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3.2 Target Localization

Once the target detection has been performed, we can locate the target to subpixel accuracy by calcu-
lating the centroid of the duster of target pixels f(xi) from (in 1-D)

xC = ZXif i)/Z Xi) . (6)
i i

where i is 3 pixels in 1-D. Other estimators axe also possible and may perform better, especially those
using information on the 2-D Gaussian shape of the target. As we show (Section 4), this estimator in
(6) provides adequate subpixel target location.

3.3 Track Initiation

To determine target tracks and overcome various -false peaks, we form the optical HT of the composite
image frame. Because each target in each input frame contributes to two difference frames, the targets
produce two peaks in the difference frames: a negative peak, and a positive one. This information can be
used by convolving the temporal sequence produced at each pixel location with a [+1 -1] kernel, i.e. we
require both peaks for a target. This may also be viewed as computing a double difference approximation
to the second derivative. The composite frame is produced by taking the maximum value produced as
a result of the convolution at each pixel location.

4 Initial Results
4.1 Performance Measures

Table 3 lists the measures we use. A large BSF is good (and indicates a large suppression of the
background) and a large TRF is desirable (so that the target is not suppressed). For perfect target
extraction, the TRF will equal 2.0 (due to + and - target peaks in the difference frame).

Parameter Symbol Definition
Background Suppression Factor BSF vfance of the oRmhaltmage

Background Shift Estimate Accuracy - AB - AB

Target Retention Factor TRF tarxet ene m diterenceimae

Processing Gain PG (BSF)(TRF)
Input Signal to Noise Ratio SNR avege backround Peak

Output Signal to Noise Ratio SNR! (PG)(SNR!I)

Table 3: Summary of performance parameters

4.2 Downlooking Data

Fig. 6 shows 5 of the 32 frames. The location of the target is not obvious and is shown in our output
data obtained (Fig. 7) with our algorithm. Table 4 shows the accuracy of the background shift estimates
obtained for a wide range of background shifts. The estimates are generally accurate within from 0.005 to
0.027 pixels or a maximum error of about 1/50 pixel (this is most excellent). The BSF is also noted. It is
almost sufficient to provide a 3 dB target output and hence good detection even without HT processing.
Other tests [1] have shown that our algorithm is preferable to others and is useful over a wider range of
background shifts. To handle the limited accuracy of an optical correlator for detection, we quantized the
input image to 32 amplitude levels and encoded them as 32 phase levels equally distributed over 0-27r (we
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efficiency). We also quantized the accuracy of the complex-valued Fourier transform (FT) plane MSF
to 10 amplitude and 10 phase levels. Table 5 shows that quantization has little effect on the accuracy
of the shift estimate. Other tests showed that filter quantization was the major error source and that
there was no significant difference using amplitude or phase input encoding. Similar data occur for other
background shifts. The data in Fig. 7 are the actual outputs obtairled with quantized data. Clearly all
targets are detected.

Actual Shift Avg.
horz,vert Shift Estimate BSF

0.25,0 0.245,0.003 38.86
0.5,0 0.489,0.005 22.71
0.75,0 0.777,-0.005 35.33 Typeofquantization________Estimate

0.25,0.25 0.241,0.246 18.87 Type of quantization Shift Estimate
0.5,0.5 0.477,0.483 11.13 I No quantizato 0.497,0.499

0.75,0.75 0.756,0.757 17.42 Input & filter quantized 0.530,0.529

Table 4: Comparison of BSF results for linear Table 5: Effect of input and filter quan-
interpolated differencing for various amounts tization on shift estimates using phase
of shift between images mode inputs (actual shift=0.5,0.5 pixels)-

Simulated optical HT track initiation data was then obtained. We first formed the composite differ-
ence frame (Fig. 8). Its HT (180x128) pixels in Fig. 9 shows a very easily detected peak whose coordinates
locate the input target track. The HT (by integration of the peaks in all 31 individual difference frames)
can provide an additional PG (by a factor of 31) and hence an easily detected correlation peak with
superb confidence. This confirms the presence of a target and provides information on it and its velocity
and hence an estimate of its location in the next frame (as is useful in MTT).

4.3 Uplooking Starfield Scenario (Target Detection)

We expect our algorithm to be preferable to others (when background shifts are present) since our
interpolated differencing algorithm accounts for these shifts and other algorithms do not. This was
verified for our downlooking scenario [1]. We verified that our Gauss-Markov 1 model is valid for
starfield data. This was done by using controlled shifts (in increments of 1/4 pixel using orignal sampled
imagery) and verifying the accuracy of the resulting shift estimates. We found that our shift estimates
were accurate to 3/100-7.5/100 of a pixel (with noise present). These accuracies are comparable to the
2/100 pixel background shift accuracy we found in our CN data tests (Section 4.2). Thus our algorithm
should be suitable for starfield backgrounds.

To show the need for our shift/interpolate algorithm, we estimated the background shifts between
the 7 pairs of starfield background images and found (Table 6) that they are shifted by up to +0.3 and
-0.4 pixels. Thus, even with this approximately staring, fixed, ground based real sensor data, we find
that the background is not perfectly registered between frames. Hence we expect our algorithm (which
registers backgrounds) to be of considerable benefit especially for more unstable space-based platforms,
and to allow use of simpler ground-based sensor platforms.

Real time optical lab realization of these results were obtained and are now briefly described. Two
input frames were printed as transparencies on film. The first frame was used to make a matched spatial
filter in real time using a thermoplastic camera. The second frame was input to the correlator and the
output correlation plane was digitized. Figure 10 shows horizontal (x) and vertical (y) cross-sections of
the correlation of frames 1 and 2. Six samples (3 from each slice) around the peak pixel were used in
(5) to estimate the subpixel shift between the frames. The input was shifted horizontally and vertically
in increments of 0.3 pixels and 0.39 pixels (units of output pixels) respectively (the input shifts were
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(1) (8) (16) (24) (32)

Figure 6: Sequence of test images (target in background) input to correlator

(1) (8) (16) (24) (32)

Figure 7: Sequence of frames after target detection processing

2

Figure 8: Composite downlooking frame Figure 9: HT of Fig. 8
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increments of twice the 2.54 pm accuracy of the available mechanical stages). The shift estimates were
compared to the known shift. The mean error was 0.002 pixels vertically and 0.06 pixels horizontally
with a standard deviation of 0.085 pixels and 0.090 pixels respectively. Fig. 11 shows similar fully real
time results obtained with an LCLV input and a thermoplastic filter.

2 3

Is I'

a a

Figure 10: Horizontal (x) and vertical (y) Figure 11: Optical lab real time detection
cross-sections of a cross-correlation peak used data using LCLV and thermoplastic SLMs.
to estimate the subpixel shift AB-

Table 7 shows our target detection results for the 7 difference frames. The BSF is less than in Table 4,
due to the various artifacts present in the real starfield data such as the frame to frame pixel intensity
variation and dropout phenomena. More target energy is lost for the lower energy targets, since more
of these target pixels are below the noise level. The product of the average BSF=3.0 and TRF for each
target is our PG measure. We desire PG > (SNR) - 1 to allow target detection and thus we only expect
to detect these four targets. For target 4, PG = (SNR4)- I , thus we expect this target to be barely
detectable (at approximately the same level as the noise). SNR,=(PG)SNR indicates that targets 1-4
can be detected and the composite frame results shown in Fig. 12 confirm this.

Est. background
shift (in pixels) Image Pair Target

Image pair horizontal vertical Processed BSF Number TRF PG SNR6

cO, cl .010 -.169 1, 2 2.9 1 1.43 4.3 4.47

cl, c2 .124 .196 2, 3 2.7 2 1.47 4.4 4.44
3, 4 2.2 3 1.53 4.6 2.39

c2, c3 .068 -.133 4, 5 3.3 4 1.38 4.1 1.03
c3, c4 .318 .159 5, 6 2.5 5 0.77 2.3 0.32
c4, c5 -.383 -. 120 6, 7 3.5 6 0.14 0.4 0.04
c5, c6 -.041 .123 7,8 3.7
c6, c7 -.222 -.093 Avg. 3.0

Table 6: Estimated background subpixel Table 7: Interpolated differencing algorithm re-
shift between the 8 starfield images. sults (starfield, uplooking)

4.4 Uplooking Starfield Scenario (Track Initiation)

The HT track initiation provides improved target detection as we now show. Fig. 12 shows the composite
of the 7 difference frames (thresholded at T=40). Three of the target tracks are clearly visible (targets
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1-3) and target track 4 is weakly detected. This is expected since SNRQ for target 4 is approximately
one after detection and targets 5 and 6 have SNR'Q < 1. The HT of Fig. 12 is shown (thresholded at 30)
in Fig. 13. It shows four peaks for the tracks of targets 1-4.

The robustness of the HT was demonstrated by omitting two difference frames in forming the compos-
ite frame (as seen in Fig. 14). The thresholded HT of Fig. 15 shows three clear peaks and demonstrates
that all individual detection frames need not have detected targets.

An optical real-time lab implementation of the HT for track initiation was demonstrated using a
computer generated hologram (CGH) [11] with error diffusion. A composite frame formed from 7
target detection real starfield difference frames with 6 different target trajectories (Fig. 16) was the
input to the system. The optical HT output format (Fig. 17) shows 6 peaks (2 on each 0 slice) at (p,O)
coordinates corresponding to the 6 trajectories with the location of the secondary peaks (not on the 0
slices) relative to the primary peak (on the slice) indicating the target velocities (v. and v.) along the
corresponding trajectories. Fig. 18 shows the real-time optical lab data obtained for no background noise
(ideal detection) and Fig. 19 shows similar data for the real starfield detection data in Fig. 16.

4.5 Uplooking Starfield Scenario (Target Localization)

We used our uplooking starfield data to test and demonstrate our target location algorithm to locate
the target to subpixel accuracy. The motivation for this is that one can then use a sensor with fewer
detectors, better sensitivity, etc. and obtain better equivalent resolution for steering the sensor to track
a target. For example, consider an F/6 imaging detector with D=61 cm aperture and detector pixels of
size 25 x 25 pm 2 . For a target at a range R=10,000 kin, each detector pixel correponds to 68 m resolution
(1-D) at the target. If we can locate a target to 0.115 pixels (as we can with our algorithm), then we
have improved the target resolution of the system to about 7.8 m. It would be desirable to achieve 5 m
target resolution. As another example, we consider a present telescope detector system which uses 512
x 512 PtSi (platinum silicide) detectors with 25x30 pm 2 detector pixels. It would be desirable to replace
this with a 128 x 128 InSb (indium antimonide) detector with 25x25 pm2 pixels on 50 pm centers (this
detector has much better quantum efficiency and can thus sense weaker targets, but with more starfield
strength). Similarly with a smaller physical sensor array, one can decrease fL of the telescope and scan
the same FOV, and use our algorithm to avoid the target resolution lost with fewer detector elements
for the same FOV. For our general telescope (described by A,D,F/#,N, and R) the angular resolution
A8 = (detector size)/(D.F/#). For a range R. the target resolution is RAO. The PSF or resolution on
the detectors is 1.22A F/#.

We now consider initial results obtained for our Gaussian targets and for real target data in our
starfield backgrounds. As described in Section 3.1, we first perform target detection using our algorithm.
We then apply our target location algorithm. We applied it to both the original (noise free) target images
and to the target images that resulted after use of our target detection algorithm (we refer to these as
noisy data, since residual background noise is present). We used a 3x3 window and only one horizontal
and one vertical estimator. Table 8 summarizes our results. We used the 7 detections of targets 1-3

No Noise Error Noisy Data Error
Estimates Mean Std. Dev. a Mean Std. Dev. a

Row 0.006 0.003 0.018 0.010
Column -0.004 0.020 0.040 0.025

Table 8: Target location test results (starfield background) using the centroid/moment estimation. All
values have units of pixels.
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Figure 12: Composite of the 7 difference frames Figure 13: Hough transform of Fig. 12 showing
(T=40) for real uplooking starfield data. peaks for targets 1-4.
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Figure 14: Composite of 7 difference frames Figure 15: Hough transform (thresholded) of
with two missed detections. Fig. 14 showing detection of targets 1-3.
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Figure 16: Input composite frame with real Figure 17: Optical HT output format.
starfield detection noise.

Figure 18: Real time optical HT lab results Figure 19: Real time optical HT lab results
for target only composite data frame. for the data in Fig. 16.
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(21 targets). Mean estimate error was 0.006 and -0.004, 0.018 and 0.040 for the row/column estimates
for the two cases. The standard deviation data are of concern as they indicate the range of position
accuracy (subpixel) expected. As seen, we can expect accuracy to exceed 0.075 of a pixel (3a = 0.075
pixels) with a majority of estimates accurate to better than 0.025 pixels (la). Also, residual background
noise appears to have little effect. These initial results are most attractive.

One can employ optics for this and probably achieve better results using an architecture as in Fig. 20.
In this example we place the sampled target image in an AO cell and image this onto a single detector
though an interpolating aperture. The detector samples the continuous target image (produced by
interpolation with the aperture) very finely. We simply look for the time of occurrence of an output
peak (via a sample and hold) to accurately locate the peak and hence the target's location to subpixel
accuracy.

AO cal Aperture Point
O Aele IDetector

'I PTime of maximum

I P2 tP3 Indicates targetSamped 1P2I location (subpixel)

Target Continuous target image
Input Imaging system (moving across detector in time)

Figure 20: Possible optical architecture for target location processor.
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Abstract

We describe a computer generated hologram (CGH) to produce the Hough transform (HT) with
a new output format that eliminates the ambiguity and noise caused by overlapping outputs in the
Hough space. The new format HT CGH is designed and fabricated as a multi-level phase CGH which
greatly increases the light efficiency and requires less space bandwidth product (SBWP) compared
with amplitude HT CGHs reported previously. New format HT phase CGHs have been fabricated
and tested in the laboratory and these results are presented. Optical laboratory data obtained using
these CGHs are presented for multi-target tracking of point targets..

1 Introduction

The identification of straight lines and edges in imagery is fundamental to many image processing and
machine vision applications. The Hough transform (HT) is often used to extract these features, i.e. to
paxametrize the edges present in the image. The HT is attractive because it is relatively unaffected by
missing pixels and noise [1].

Several implementations of the HT have been proposed using both optical and digital techniques.
The computational requirements of the HT cause most digital methods to be slow and/or costly. A
custom digital implementation using wafer scale integration and designed strictly for computing the HT
requires 200 msec to process a 256 x 256 image with an HT output resolution No = 64 and N, = 256 [2].
Commercially available machine vision equipment requires approximately 150 msec to compute the HT
for a 100 x 100 image with 10% nonzero pixels [3]. Several optical HT architectures using various
mechanical methods to rotate the input image have been suggested [4-6]. The rotating optics (e.g. a
Dove prism) required by these architectures are undesirable because of the additional cost, size, and
alignment difficulties encountered with moving optical components. A lensless CGH implementation
of the HT has been described [7]. This method can only produce a small number of output slices
with limited resolution due to the inefficient use of CGH space-bandwidth product (SBWP) caused by
amplitude encoding. In addition these CGHs have very low light efficiency (< 6%) and the polar output
format results in overlap in the output HT slices at the origin. This makes part of the HT output
unusable.

In this paper, we demonstrate an enhanced lensless HT CGH using phase encoding for improved light
and SBWP efficiency and a new output format which separates the 0 slices. Section 2 reviews the Hough
transform (Sect. 2.1) and the standard lensless CGH implementation (Sect. 2.2). Section 3 describes the
design of the new format HT CGH and analyzes its performance relative to the original design. Section 4
presents test results showing the performance of the new HT CGH in both design tests and application
tests. Section 5 summarizes our results.



2 Review

2.1 Review of the Hough transform

The Hough transform we consider maps the input space f(x, y) into Hough space H(p, 8) as follows

H(p,8) = ff(x, y) 6(p - zcos8 - ysin0)dxdy (1)

where 6(x) is the Dirac delta function. The effect of this transform is to map straight lines in f(x, y) to
points in Hough space. The point coordinates (p, 8) are determined as shown in Fig. 1 where p is the
normal distance from the line to the origin and 0 is the angle between the normal line and the positive
x-axis. For the implementation we present, 0 ranges from 0' to 180' and p can be positive or negative.

HOUGH
INPUT TRANSFORM
PLANE PLANE

L1
L2

+YX

d d
P1 P2 P3

Figure 1: Straight line in input space and its Figure 2: A pair of orthogonal cylindrical lenses
corresponding Hough space parameters p and may be used to compute a single slice of the
0. Hough transform. The focal lengths are se-

lected so that one lens images from P1 to P3
and the other lens performs a 1-D Fourier trans-
form in the orthogonal direction.

2.2 Review of the lensless HT CGH

The lensless HT CGH described by Richards et al [7] encodes N pairs of cylindrical lenses to produce
N slices of the HT at different 0 values. Fig. 2 shows how one pair of orthogonal cylindrical lenses
(N=I) produces a single slice of the HT. The focal lengths of the lenses are chosen such that one lens
images from P1 to P3 (fL2=d/2) and the other lens (fLl=d) produces a Fourier transform (FT) in the
orthogonal direction. This produces one slice (at 0,) of the 2-D HT, where 0 is determined by the
orientation of the axis of the cylindrical FT lens. With multiple lenses (a CGH) multiple HT slices are
produced in a polar format (4a). Note that the slices so produced are in a polar format as opposed to
the rectangular format typical of digital HTs. This can also be viewed as integrating the input image in
1-D and producing a slice of the Radon transform.

By encoding N cylindrical lens pairs at different 0 values on a CGH, N slices of the HT can be
produced simultaneously. The desired transmittance of the CGH is thus

t(x, y) = N exp--[(x cosi + ysin0)? + 2(ycosOi - x sin 0,) 2]} (2)
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where k = 27r/A. Note that It(x, y)l 0 1. To implement the complex valued function t(x, y) using an
amplitude CGH, the CGH transmittance function in (2) is encoded using a carrier spatial frequency a.
and a bias a as

a + It(x, y)I cos[27ranox - Ot(x, y)] (3)

where t(x, y) = It(x, y)j expjot(x, y). The resulting real and positive valued function is then quantized
to the available transmittance values (e.g. 0 and 1, or a limited number of analog levels) using error
diffusion [8,9]. We use binary (0,1) transmittance values.

A typical output from this CGH with 4 slices is shown in Fig. 3. Due to carrier encoding, the usable
output occupies a small part of the entire output region (left portion of Fig. 3) and thus contains a small
number of resolvable points, i.e. a low SBWP (determined by the size of the output region and the spot
size produced by the CGH in that region). Only 6% of the CGHs SBWP is available in the usable output
region, as we detail in Section 3.1. In contrast, the new format and phase CGH we describe uses 25%
of the available SBWP. The percentage of input light diffracted into the usable output is approximately
2% in the old format (with an amplitude CGH). With an 8 level phase CGH we obtain a light efficiency
of , 70% (Section 4) with our new CGH. A problem caused by the format of the prior HT CGH is
that overlapping slices produce ambiguous outputs. If a peak occurs in the center, we cannot determine
which slice is producing the peak. The area around the overlap has excessive noise due to interference
between the output slices, which precludes detecting HT peaks near the center.

/ I \

a b c

Figure 3: Typical output for 4 slice amplitude Figure 4: (a) shows the original HT CGH out-
HT CGH with uniform input illumination. The put format, (b) shows the effect of the subcar-
overlapping slices can result in ambiguous out- riers used to separate the slices, and (c) shows
puts and create noise due to interference be- the additional effect of the overall carrier used
tween the slices. The two other regions are the to recenter the output. The circle shown is for
DC and conjugate pattern due to carrier encod- reference only and does not appear in the out-
ing. put.

3 Design of the new format HT CGH

To eliminate the ambiguity and interference effects observed in the original [7] format HT CGH, we
need to separate the output slices so they do not overlap. We accomplish this by encoding an additional
carrier on each lens pair. Specifically, each lens pair is placed on a different subcarrier frequency a. at a
direction chosen to move the slice radially away from DC along the slice. The non-overlapping pattern
which results is illustrated in Fig. 4b. The original pattern is shown in Fig. 4a for reference. Finally,
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the entire pattern is recentered about DC using another carrier, ac,, resulting in the pattern shown in
Fig. 4c. Recentering the output is done to reduce the maximum spatial frequencies present in the CGH.
The desired complex transmittance (which we can record with a phase CGH) for an N slice HT CGH
using the new output format is

N jk 2 2
expUi27rac(z + y)]- exp{ -j[(x cos6, + y sin 6,) + 2(y cos 6, - x sin e,)]} expU2lra.(y cos 0, - x sin 6,)]

(4)
where k = 2r/A and 6i corresponds to the 0 value of the N desired HT slices (i - 1,..., N).

We now describe how to choose the carriers a, and a,. The minimum spatial frequency required
to separate the slices must shift each slice in the output by one-half the slice length D. This D/2 shift
defines a diffraction angle a by tan a = D/2d. The corresponding spatial frequency is

sin a tan a D ()
= A \ 2Ad

The small angle approximation made in (5) is valid as we are limited to relatively low spatial frequencies
(and thus small diffraction angles) by the CGH resolution (l) we can fabricate. For the CGH fabrication
process used, the maximum recordable spatial frequency is 1/21, = 1/40 pm=25 cycles/mm which
corresponds to a diffraction angle a = 0.910 for A = 632.8 nm. The extent of the output HT region
has been increased by D/2 both horizontally and vertically as a result of separating the slices, with
a commensurate increase in the maximum spatial frequency to be recorded. To reduce the maximum
spatial frequency, we choose ac = a. and apply it to the entire pattern (this reduces the maximum
spatial frequency and yields the output format in Fig. 4c).

Fig. 5 shows the benefits of the new output format vs. the prior format. The image used as input
to the HT is shown in Fig. 5a. Fig. 5b shows the output of the old format HT CGH with overlapping
HT slices. The HT peaks due to the 2 long lines overlap at the center and cannot be distinguished. The
output of the new format HT CGH is shown in Fig. 5c. All 4 peaks are detectable and have peak height
proportional to the corresponding line length.

3.1 SBWP utilization

Space bandwidth product (SBWP) is a measure that characterizes the information content of a spatial
signal and is defined as the product of the spatial extent of a signal times the signal's bandwidth. For
a CGH output (or a CGH) this is equivalent to the physical size of the output (or CGH) divided by
the minimum resolvable output spotsize (CGH pixel size). For a given CGH SBWP, we can expect
some percentage of this initial SBWP to be present in the usable output region, i.e. not necessarily
all of the input SBWP lies in the usable output area. We should expect this intuitively as not all of
the output plane is usable. Because the CGHs we consider are lensless, the relation between the CGH
plane and the output plane is a Fresnel transform and not a Fourier transform. The SBWP computation
is not necessarily straightforward because the maximum spatial frequency content (or equivalently the
minimum resolvable spotsize) varies with location in the Fresnel transform (output HT) plane [10].
Considering this, we now compare the two HT CGH designs.

3.1.1 Amplitude CGH analysis

Fig. 6 diagrams the amplitude HT CGH setup. Three regions are present in the output. An on-axis
region (indicated by the thick solid line in Fig. 6) of the same size (A) as the input is produced by the bias
term in (3). The cos term in (3) can be rewritten using Euler's relation: cosO = [exp(j4) +exp(-j4)]/2.
The exp(j4) term has the desired transmittance of (2) and produces the HT output (indicated by the
thin solid line in P3 of Fig. 6) which is the same size as the input, since fL of the imaging lenses on
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(a) (b) (c)

Figure 5: (a) Input to the HT CGH containing 2 long lines and 2 short lines. (b) Output of the old
format HT CGH with overlapping slices. The HT peaks due to the 2 long lines overlap (since they both
pass through the origin) and cannot be distinguished. (c) Output of the new format HT CGH. All 4
peaks are detectable and have peak height proportional to the correpsonding line length.

the CGH was chosen for 1:1 magnification. The exp(-jo) term is the complex conjugate of the desired
transmittance and thus consists of N pairs of cylindrical lenses with negative fL. This term produces
the upper P3 region (indicated by the dotted line in Fig. 6) which is 3 times the size of the input (since
the negative fL lenses produce a diverging output which produces a larger P3 pattern). The two terms
produced by the cos are centered off-axis due to the carrier a.. Note that a, is chosen to position the
center of the P3 regions due to the desired and conjugate terms as shown in Fig. 6. To prevent overlap
of the desired output (of size A) from the output due to the bias term (of size A) requires that

aoAd > A/2 + A/2 = A. (6)

To avoid overlap between the desired output (of size A) and the output due to the conjugate term (of
size 3A), we must have a spacing of at least 4A between the replications due to sampling (a space of
only 4A is required since the output due to the conjugate term can overlap the output due to the bias
term). Since the replications are separated by Ad/Ia, this constraint requires that

Ad < (7)

must be satisfied [9], where I. is the CGH pixel spacing, A is the wavelength, d and A are as shown in
Fig. 6. We note that the condition on I. in (7) does not satisfy the Nyquist criterion for sampling the
CGH transmittance in (2) (the Nyquist criterion requires I, < Ad/5A). It is not necessary to satisfy the
Nyquist criterion to obtain a usable output. Aliasing caused by undersampling is of no concern as long
as the desired output region is not overlapped by the other terms in the output plane P3.

For a given CGH size A, the maximum spatial frequency (fmax) we can produce in the output is
fx = A/Ad, i.e. this is the frequency of the fringe pattern produced by interfering coherent point
sources separated by A in a plane a distance d from the output plane. This is the value of the central
flat portion of the trapezoid in Fig. 7. This frequency corresponds to a minimum resolvable spotsize in
the output of 1/fmax = Ad/A. We emphasize that producing this minimum spotsize requires the input
points to be separated by a distance A, the full CGH aperture. As we look at a given point in the output
further from the origin, the spatial frequency in the CGH plane P2 required to diffract light to that
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Figure 6: Diagram showing HT CGH system and location of the three output terms for the amplitude
HT CGH.

point increases. At some output location, we will no longer be able to diffract light from both edges of
the CGH aperture to that output point. Thus the effective CGH aperture decreases and Iax in the
output decreases (the minimum resolvable spotsize increases) with P3 distance from the origin. This
is the situation in the sloping regions of the plot in Fig. 7. For a given pixel spacing l, the maximum
spatial carrier frequency we can represent is aco = 1/21,. This sets a maximum first order diffraction
angle according to tan eco = sin c, = Aco, and determines the location of the point where f,,= starts
to decrease, indicated in Fig. 7 by dco - A. As decreases in this sloping region, the minimum
resolvable spotsize increases. At the edge of the pattern (dOco + A) fma = 0 and the minimum resolvable

spotsize is o. The utility of Fig. 7 is that it represents the distribution of SBWP in the output. The
number of usable output points (i.e. the output SBWP) is determined by integrating the plot in Fig. 7
over the usable output region (the area under the region of width A in Fig. 7 is thus the output SBWP).
Since the usable output lies entirely in the flat section, the output SBWP (in 1-D) can be computed as

A2

output SBWP = Ad" (8)

This can also be more easily obtained as the product of the HT output size A and the reciprocal of the
output spotsize (Ad/A). The input SBWP is A/lI and thus the SBWP utilization in 1-D is

SBWPutput Al., 1 (9)
SBWPinput -- 4

where we used 1. from (7). For the 2-D case, this is 1/16 and thus the usable output region contains
only 6.25% of the input SBWP.

3.1.2 Phase analysis

A similar analysis is used to determine the SBWP utilization of the new format phase HT CGH. Because
no carrier or bias is required with the phase encoding, P3 contains only the desired output (of size A)
and its replications at Ad/1- due to sampling. Thus, SBWPutput = A2/Ad as before. Since (4) consists
of the sum of several lens functions, the maximum frequency of (4) will be determined by the component
lens with the maximum frequency. The maximum frequency is A/Ad which occurs at the edge (z = A/2)
of the imaging lens since its focal length (fL = d/2) is the shortest. This follows from evaluating (at
the edge of the lens) the derivative of the phase function for a lens with the Fresnel factor included. To
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Figure 7: Diagram showing maximum frequency distribution in the output of the amplitude HT CGH.

prevent aliasing from replications due to sampling, , must satisfy

2A < (10)

Thus SBWPinput = A/I and the SBWP utilization in 1-D for the phase CGH is

Al 1 (1
Ad -2"11

In 2-D, the SBWP utilization will be 1/4 or 25%.

3.1.3 Output SBWP and HT output resolution

Since SBWP characterizes the information content, we should be able to relate the output SBWP to the
HT output resolution, or equivalently the maximum number of 0 slices and the number of p pixels on each
slice. In the HT plane, the number of 0 slices is ultimately limited by the width of the slice which will
limit the number of slices which can be produced across the output region. The CGH lenses produce a
FT in the direction across the slices and the resolution is theoretically Ad/A. Thus we expect the number
of 0 slices to be the size of the output region (A) divided by the minimum resolvable output spotsize
(Ad/A) yielding A2/Ad as the number of 0 slices possible. This equation matches (8), the output SBWP.
In the p direction, the minimum spotsize in the output is also Ad/A as limited by the CGH aperture.
Thus the number of points in the p direction is also A2/Ad and equals (8).

3.2 Quantization effects

Table 1 shows a comparison of the mean square (MS) quantization error in the desired and obtained
CGH transmittance and the MS quantization error in the desired and obtained HT output for direct and
1-D error diffusion (ED) quantization methods for various numbers of slices in the HT CGH. The output
results in Table 1 are from simulations of the Fresnel transform of a uniformly illuminated CGH. Clearly,
the 1-D ED method has the smallest MS quantization error in the CGH and also the smallest MS error
in the output and provides an improvement over direct quantization. We also note that the MS CGH
and output error appear to level off for the 1-D ED case while the MS error for the direct quantized case
is steadily increasing. As the number of HT slices increases, the function to be encoded becomes more
complex and the need for ED increases. The MS output error is computed as the difference between the
outputs from a quantized and a non-quantized CGH in the output region where the HT occurs.

4 Fabrication and laboratory testing of the HT CGH
To test the performance of the new CGH, we fabricated a 4 slice phase HT CGH using 8 phase levels and
a CGH resolution of 256 x 256 pixels. The design was made using A = 632.8 nm,d = 323.6 mm, I, = 20
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Number of Quantization Mean square quantization error
HT slices method CGH HT output

2 direct 0.151 15540
1-D ED 0.097 17172

4 direct 0.200 33048
1-D ED 0.119 22596

8 direct 0.302 51129
1-D ED 0.130 21034

16 direct 0.412 64685
1-D ED 0.132 16917

32 direct 0.507 74683
1-D ED 0.129 13621

Table 1: Mean square quantization error in CGH (input) and in HT output for two quantization methods.

pm, A=5.12 x 5.12 mm2 and a. = a, = 12.5 cycles/mm. The desired transmittance was computed
using (4) for 4 uniformly spaced HT slices at e = 0,45,90,135 degrees. This complex (and not purely
phase1) transmittance was quantized to 8 phase levels uniformly spaced on the unit circle (4i = i2ir/8,
i = 0,..., 7) using 2-D error diffusion [11]. A 40x size mask was printed for each of the 3 etch steps
using a Linotronics 300 laser printer. Each mask was photoreduced to an actual size of 5.12 mm with
a 20 pm final pixel size. In the original 40x mask, each final 20 pm pixel region is 800 pm and is made
square to high accuracy with 80 x 80 circular spots of 20 pm diameter on 10 pm centers. The CGH was
manufactured with VLSI techniques using photoresist and wet etching into glass in the Carnegie Mellon
cleanroom facility.

Fig. 8 shows the output of the CGH when illuminated with an approximately uniform circular input.
The light efficiency of the CGH is measured to be 69.4%. This is computed as the ratio of the total
power in the usable output to the total power in the entire output. Reflection and backscatter losses are
not considered in this measurement. The maximum theoretical efficiency for an 8 level CGH is 95% [12].
The light is uniformly distributed between the 4 HT slices (individual slice efficiencies were measured in
the lab to be 17.9%, 18.6%, 17.5%, and 16.9% for 0 = 0, 45,90,135 degrees respectively).

Fig. 9 plots the intensity along each HT slice in the output due to a circular input. The dashed line
is the expected result from a perfectly uniform response to a circular input. With an input of uniform
width, the intensity along the HT slices is expected to be uniform. The results are quite good with the
single spike at the end of each slice due to the small amount of remaining overlap between the slices.
This overlap can be eliminated by slightly increasing the value of a, from the minimum value used in
this CGH.

Fig. 10 shows cross sections orthogonal to each slice at the 5 radial locations indicated in Fig.11.
The typical slice width is approximately 90 pm which agrees well with the theoretically predicted value
2Ad/A =80 pm.

4.1 Application tests

The detection and tracking of point targets in noisy backgrounds is of interest for several long range
sensing applications we are studying [13]. By time integrating a number of detections obtained as the

'Even though the HT CGH transmittance is a summation of purely phaseelements (cylindrical lenses), the combined
transmittance contains both phase and amplitude components.
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Figure 8: Output of the (a) old format and (b) the new format phase CGH with uniform circular input.
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Figure 9: Scan along each HT slice showing the uniformity of output. The dashed line is the expected
result from a perfectly uniform response to a circular input with a diameter less than the aperture of
the CGH.

0 degree slice 45 degree slice 90 degree slice 135 degree slice

S S

A--
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Figure 10: Cross-sections (5) taken orthogonal to each slice. Fig. I1I shows the corresponding radial
location of each cross-section.
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Figure 11: Reference showing location of each section plotted in Fig. 10. Each line style in this figure
corresponds to a plot line in Fig. 10.

point target crosses the sensor field of view, a composite frame containing straight line target tracks is
obtained. Fig. 12 shows such a composite frame with residual detection clutter present in the background.
By computing the HT of the composite frame, we obtain peaks that indicate the presence of target tracks.
This information is useful for initiating a multi-target tracker. An optical real-time lab implementation
of the HT for track initiation was demonstrated using the new format CGH. A composite frame formed
from 7 point target detection frames with 6 different target trajectories (Fig. 12) was the input to the
system. The optical output HT format (Fig. 13) shows 6 peaks (2 on each 0 slice) at (p, 0) coordinates
corresponding to the 6 trajectories with the location of the 1 or 2 secondary peaks (not on the 0
slices) relative to the primary peak (on the slice) indicating the target velocities (v. and v,) along the
corresponding trajectories. Fig. 14 shows the real-time optical lab HT data obtained for no background
noise (ideal detection) and Fig. 15 shows similar data for the real starfield detection noisy data in Fig. 12.

5 Summary
A new format HT CGH has been designed and fabricated which solves several problems found in pre-
viously reported HT CGHs. By using phase encoding we have increased the light efficiency from 2%
to 70% and the SBWP efficiency from 6.25% to 25%. The noise and ambiguity caused by overlapping
of the output slices in the old format CGH has been eliminated by adding a subcarrier to each slice.
The effect of this subcarrier is to separate the slices in the output so that the entire can now be used.
We have demonstrated the new HT CGH by presenting optical lab results for a multi-target tracking
application showing the detection of point target tracks.

Support for this work by the Strategic Defense Initiative Office of Innovative Science and Technology
(monitored by the Office of Naval Research) and partial support from the Jet Propulsion Laboratory is
gratefully acknowledged.
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Abstract

The Hopfield neural network was first used for optimization in solving the famous Traveling Salesman Problem.
We have applied a similar approach to the solution of another problem, namely data association for multiple targets.
Simulation data are presented which demonstrate the network's ability to successfully determine the optimum data
association solutions, with target noise present. Simulations also indicate the ability to solve the problem on a low
accuracy (a&alog optical) processor. Optical implementation issues are discussed, and an optical architecture is
presented with laboratory results.

Introduction

t=n+1
t=n - - -

->--------- -4 x
Z ates t n+1 association matrix

target estimates target measurements

Figure 1: mustration of the Data Association Problem.

The data association (DA) problem for multitarget tracking (MTT) is illustrated in Fig. 1. Existing targets in a
given time frame must be associated with target measurements obtained in the next time frame. The existing target
data are target state estimates which have been computed using previous measurement data. The properly associated



measurements are then used to update the target state estimates for the next time frame. This iterative procedure is
used to maintain track (in parallel) on multiple targets throughout the target observation time. The entire MTT system
is shown in Fig. 2, with the Data Association subsystem highlighted.

TRACK
INITIATION

DATA PSTATE OUTPUT

SCENE DTCONASSOCIATIONESIAS
TRACK EVALUATION4:

AND
CORRECTION r

CORRELATION HT NN DIGITAL FILTER

I OPTICAL 1 r  DIGITAL

Figure 2: Complete MTT system.

The association problem is easily mapped onto an association matrix as shown in Fig. 1. Each "X" represents
an association between a target estimate and a target measurement, thus each specific pattern of "X"s represents a
solution to the problem. The problem constraints are defined as follows :

1. Measurements are associated on a nearest-neighbor basis, meaning that targets which are closest to one another

over two consecutive time frames are assigned to one another.

2. A given measurement is due to no more than one target.

3. A target will produce only one measurement in a given time frame.

The first constraint is implemented through use of a distance measure which combines the position and velocity
differences between targets. The second and third constraints combine to force a one-to-one correspondence between
the measurements and targets in each time frame pair. This translates into having only one "X" per row and column
in the association matrix for a valid solution. When formulated in this way, the data association problem is similar to
the Traveling Salesman Problem (TSP), a classical optimization problem. The Hopfield neural network [I] has been
used to solve the TSP [2, 31 with varying degrees of success. We present a modified version of the Hopfield network
which is designed to solve the data association problem in a manner similar (but not identical) to that used for TSP.

Hopfield Issues and DA Neural Network Theory

Convergence of the Hopfield network is a key issue, and is one of the strong points in favor of its use. It has been
shown [1] that when the network is run in a continuous-time (asynchronous) mode, and the neuron interconnection
weight matrix is symmetric, the network is guaranteed to converge to a stable state. Furthermore, it has been proven
[4] that when the network is run in a discrete-time (synchronous) mode, and the neuron interconnnection weight
matrix is symmetric, the network will either converge to a single stable state or oscillate between two states. Since the
method of gradient descent is used, any stable state is only a local minimum and thus is not guranteed to be the correct
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solution. Likewise the oscillatory states are not correct solutions, but in practice we find that most stable states are
near-optimal, while oscillatory states are not. Since many implementations of the Hopfield net use the discrete-time
mode, the possibility of oscillations is of concern. We address this issue by using a neuron thresholding function
which is not strictly binary, but which is a sigmoid function. Empirical results indicate that using this "soft" neuron
function can help reduce the incidence of oscillations. Use of such a neuron function means th.z: the final (stable)
neuron values are continuous between 0 and 1. The final values after convergence are thus thresholded, with values
above 0.5 counted as ones, and those below 0.5 counted as zeros. This permits many near-optimal solutions to be
counted as optimal ones, thus in practice we have found convergence to optimal solutions in a large number of cases.

Use of the Hopfield net for solving TSP has met with limited success, starting with the efforts of Hopfield and
Tank [2], which produced good results using a continuous-time network. Later efforts [3] met with much less success,
prompting a variety of modifications [5, 6) to the basic Hopfield net approach. The main issues are convergence
of the network to valid solutions (ones which meet the one-to-one correspondence criterion), and convergence to
optimal vs. suboptimal solutions. A fundamental limitation to Hopfield net optimization due to an aliasing effect
in the interconnection weights [7] has been suggested as the source of these problems. The argument is that many
invalid solutions are encoded in the weights along with valid ones when large numbers of neurons are involved, thus
limiting the network's ability to properly enforce the optimization constraints. We address this issue by encoding
only some of the constraints, namely the one-to-one correspondence, in the weights. The target distance constraints
are encoded in the individual neuron bias values, whereas in the standard Hopfield network there is no information in
the bias values. Simulation results indicate that this approach is successful in solving the DA problem, and thus may
be useful for other combinatorial optimization problems as well.

X~o N, X13xo -- - - 1

X 2 1- -  X4 4

Figure 3: Assignment of neurons to associations.

Our neural network solves the DA problem by mapping one neuron onto each entry in the association matrix, as
shown in Fig. 3. For the case of Nm targets there are Nm2 neurons. The problem is solved by determining the pattern
of activated, or "on", neurons which represent the optmimum solution. This is done by using an energy function [8]
for the neural network which satisfies the three problem constraints after the manner of Hopfield and Tank [2]. Thus,
minimization of the energy function results in solution of the problem. The neuron energy function we use is

Nm Ni Nm Nm Nm Nm

E(X) = C Z XiiDij + C2'(-EXj- 1)2 + C3 (E Xj - 1)2. (1)

This function is quadratic in Xij. The first term enforces the nearest-neighbor constraint. The Dij term is the
"distance" between estimates and measurements i and j in the first and second time frames respectively,

Dij = A1IE 1P - +P2112 BI)Yh1 - _j211, (2)

where -- is the i-th position vector in time frame t, and .t is the i-th velocity vector in time frame t. The
relative distance measure is the sum of the magnitude squared (scaled) differences in the position vectors and velocity
vectors as in Eq. (2). We calculate these N,,2 distances Dij for all possible associations in the two time frames.
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Since the neuron values Xij and the corresponding distance measures Dii are multiplied in the first term in Eq. (1),
minimization of the energy function forces those neurons associated with large distance measures Dii to take on
lower values than those associated with smaller distance measures. Thus the neurons associating measurements
which are closest to one another should have the dominant outputs, and the nearest-neighbor constraint is satisfied.

The second and third terms in Eq. (1) enforce the second and third constraints, the one-to-one correspondence of
targets and measurements in the two time frames. The second term states that for each estimate i in time frame t, the
sum of the neuron outputs associating all measurements j in time frame t + I with estimate i in time frame t should
be equal to one when the energy function is minimized. The nonlinear neuron function drives the neuron values close
to "0" or "I", thus this term should force only one of the N,,, neurons associated with a given measurement i to be
close to a value of "I", thus satisfying the second constraint. Likewise the third term in Eq. (1) forces one of the i
neurons in time frame t to be close to "1" for a given measurement j in time frame t + 1, thus satisfying the third
constraint. The squaring used in terms two and three does not affect the constraints, since the terms should be driven
to zero for mrnimization in any case, and these quadratic elements in terms 2 and 3 (corresponding to squared errors)
result in a useful linear neuron evolution equation.

The coefficients C1 , C2 , C 3 , and A and B in Equations (1) and (2) respectively, are adjusted to provide relative
weights to each of the constraints, allowing some to be enforced more strongly than others. In general the one-to-one
constraints (terms 2 and 3) are weighted equally, since both parts of the constraint should be equally true. In our work,
we set C1 = C2 = C3 = I and control the relative importance of the nearest-neighbor and one-to-one constraints by
varying only the values of the A and B coefficients in Eq. (2). Further, the relative importance of the position and
velocity measurements are reflected in the relative values of A and B, with more weight given to the more reliable
measurements. The A and B values are also determined by the relative magnitudes of the position and velocity
distances. If the position distances are an order of magnitude different than the velocity distances, then this should be
reflected in the relative A and B coefficient weights. In selecting A and B, the magnitudes of the Dij values are also
taken into account with respect to the neuron output values in terms 2 and 3 in Eq. (1). These terms are related to the
number of active neurons, which in turn is related to the number of targets and measurements in both time frames.
In our work there are thus two free parameters, the A and B coefficients, which directly affect the neuron energy
function and the neural network's performance.

The neural energy function is minimized by the method of steepest descent. While quadratic functions are usually
minimized by taking the derivative and setting it to zero, such a procedure in this case necessitates inverting a singular
matrix (in general). Thus an iterative neural net solution rather than a direct solution is required. It has been shown
[I] that if the neuron states Xii evolve in time as OXii/Ot = -OE(X)/DXij, then the energy or error for E(X) is
minimized. Thus we define

AXij = - Xi = OE(X) = Di+ 2(1- Xim - 1) + 2(1:Xi - 1). (3)
at OXii M n

Each neuron value is updated in time by iteratively subtracting a fraction q of AX,, from each Xi, until the net
converges to a solution. Ideally this is done in continuous time, but in practice the network is iterated at discrete time
intervals. The time evolution of the neurons is approximated from time step t = n to t = n + I by

Xij(n + 1) = f [Xi(n) - iiAXii(n)], (4)

where n is the discrete time index and f[ ] is a nonlinear sigmoid thresholding function defined as
tk

Xk = f[Uk] =0.5(1 + tanh 1-), (5)

where the uk are the pre-thresholded neuron values and the Xk are the thresholded neuron values.
We refer to Eq. (4) as the neuron evolution equation. The neuron values are updated repeatedly using this rule until

they converge to stable values. The value of 1r affects the rate of convergence; larger values can lead to convergence

4



in fewer iterations, but also increase the risk of oscillating about the global minimum. We used 77 = 0.2 in our
simulations. Equation (3) can be written as a matrix-vector product (where the neuron states are vector elements)
plus an external vector (associated with the distances Dij). This determines the form of the Nm2 xN,n2 matrix of

fixed interconnection weights in the neural net architecture, which consists of an input layer of fully interconnected
neurons (hence the need for N,.' connections for N, 2 neurons). The update vector is then subtracted from the
original neuron vector to complete one iteration as in Eq. (4).

The neuron evolution equation is restated as a matrix-vector multiplication by denoting 2L as the neuron vector,
where each element Xk is a neuron value. Equation (4) is then rewritten as

Xk(n + 1) = f[X&(n) - ,AXk(n)], (6)

which is a simple vector subtraction followed by a thresholding. Computation of the "update vector" AX with
elements AXk is performed using linear algebra operations by defining a weight matrix M (with elements Mkn) and
a bias vector D (with elements D), yielding an update equation of the form

AXk= ,MkmXm + D k + C, (7)

which is simply a matrix-vector multiplication and a vector addition, plus a constant. At this point, one could solve
directly for the neuron values by setting Eq. (7) to zero. Unfortunately the matrix M (we denote matrices by boldface
type) is singular in general and cannot be inverted, thus preventing a direct solution and requiring an iterative neural
net solution.

The form of M will now be determined. The doubly-subscripted neurons Xij in Equations (3) and (4) are related
to the neuron vector elements Xk by

k = N2(i - 1) + j, (8)

where I < i .< N (where N1 is the number of target estimates in the first time frame) and I < j <_ N 2 (where N2 is
the number of measurements in the second time frame). This assigns the Xi values to the first N 2 elements of the
X-vector, the X2j values to the next N2 elements of X, and so on. A similar relation holds between the Dij terms
and the elements Dk of D. To proceed further, we rewrite the update equation (3) as

AXii = Dij + 2(Xi + Xi2 +'"- + XjN2) + 2(Xi + X2i +"".- + XNtJ) - 4. (9)

By using the relationship between the indices k,i, and j in Eq. (8), the update AXk in terms of the elements of X and
D becomes

AXk = Dk + 2(XN2(i-)+r + XN,(i-I)+2 + "'" + XN 2(i-I)+N2 ) +

2(Xj + XN2+i + .-- + XN2 (N,-,)+j) - 4. (10)

This equation can be rewritten as Eq. (7) if the matrix M is such that

2 form=N 2(i-1)+l,N2(i-l)+2,...,N2(i-1)+N2
Mk,, and m= j, N2 + j,..., N2(Nr - 1)+j (11)

0 otherwise

where the m index values corresponding to nonzero Mk,, are simply the indices of the elements of X_ specified in
Eq. (10). From Eq. (11), we consider the non-zero elements of the kth row of M. These are the N2 elements starting
at term N2(i - 1) + I, and every N2-th element starting at term j. Each such element is equal to 2. For elements for
which both non-zero conditions in Eq. (11) are satisfied, the entry in M is equal to 4 (i. e. Mkm = 4 when k = m,
the diagonal elements). Note that for a given row (k), i and j must satisfy k = N2(i - 1) + j as well as I < i < N1
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and I < j < N2. This completely specifies the form of M. As an example, we consider the case of NI = N2  3

measurements. Then there are N = Ni N2 = 9 input neurons, and the 9x9 interconnection matrix is
422200200
242020020
224002002
200422200

M= 0 2 0 2 4 2 0 2 0 (12)
002224002
200200422
020020242
002002224

The interconnection matrix M is symmetric in all cases, thus guaranteeing convergence to one or two (oscillatory)
stable states. In general, M is a block Toeplitz matrix with NzxNj Toeplitz submatrices (each of which is N2xN 2 ),
the matrix is singular, and there are only two different submatrices within M (independent of NI, N2, or Nm). The
form of the matrix M is shown in Fig. 4, which is a completely general result for all Ni and N2 even if N # N2.
It can be used to partition large problems onto smaller processors and SLMs with ternary levels. The form of M is
advantageous because it has only three values (4,2,0) independent of Ni, N2, or N,. Further, the M determined
by the largest possible NI and N2 values can be used with smaller numbers of targets by using only parts of the M
matrix.

on-diagonal
od2 agn 2 Interconnection Matrix M

N 2  0 0 I 8 3L24 21,

N2  - "N, blocks

off-diagonal 1

L02 0~
00: : N, blocks

N 2
Figure 4: Block Toeplitz form of the interconnection weight matrix.

The final form of the update equation in Eq. (7) is

AXk = EM,.X,. + bk, 3)

bk = Dk - 4

which is simply Eq. (10) rewritten using Eq. (II). Thus, the calculation of AXk requires a matrix-vector multiplication
with an added vector/1.

DA Neural Network Simulation Results
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The network was tested using simulated target scenarios which have been detailed elsewhere [9]. The targets are
simulations of intercontinental ballistic missiles during the first 120 seconds of flight (boost phase). Each data frame
consists of ten targets and ten clutter (noise) points. Varying levels of measurement noise (jitter) are introduced to
the time frame data as well. Target estimates are calculated using a fixed-coefficient filter as detailed elsewhere [10].
Association is thus performed between estimates and measurements over several pairs of time frames for different
target scenarios and noise levels.

The DA neural net (NN) parameters used were uo = 0.2 and q = 0.2, which were determined empirically. The A
and B coefficients were adjusted according to the relative distances between targets, which varied with the particular
launch time window (early, intermediate, late) used. The coefficients are shown in Table 1.

time coefficients
window A B

early 7 17672
intermediate 2 2360

late 0.2 432

Table 1: Neural net coefficients used for each time window.

Previous results of the DA neural net [91 which used target measurement-to-measurement rather than estimate-to-
measurement association demonstrated good results, with perfect performance in many cases and less than 0.5% of
the neuron values in error in a majority of cases. New tests have been run using estimate-to-measurement association
on one target scenario (scenario 1) with clutter noise present and jitter noise absent, and the correct solution was
determined in all cases. Convergence of the neural network was rapid, averaging only 10-20 iterations. The only
errors occurred when large jitter noise errors were introduced. Table 2 shows the performance of the neural network
with increasing levels of jitter, with level 6 as the highest. Both the accuracy (percent) of the target state estimates
and the percentage of the total number of neurons in error are shown. The results are for a single target scenario over
eight time frames (seven time frame pairs) of early time window data (34.5-35.5 seconds after launch). As seen, no

jitter % estimation errors % of neurons no. of
level p. p V Y; in error iterations

1 0.0 0.005 0.04 0.1 0.0 10
3 0.0 0.01 0.1 0.3 0.0 10
6 0.0 0.03 0.3 0.9 0.6 20

Table 2: DA errors and % estimation accuracy withjitter for estimate/measurement associations.

DA errors occur at jitter level 3, but only at jitter level 6. These good results indicate that the DA neural network can
perform rapid, accurate data association in realistic multiple target environments.

Optical DA Neural Network

Since the main computational step in the DA NN iterations is a matrix-vector multiplication, the network is
implemented using optics as shown in Fig. 5. The neuron values are input at plane PI using a 2-D liquid crystal
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PH L I P I L2 L3 P2 L P

Figure 5: Hybrid optical-digital DA neural network.

television (LCIV), a Hitachi LCD501. This LCTV is driven by a Silicon-TFI active matrix system which provides
a high contrast input and does not have a long decay time between frame changes. The neuron inputs are generated
by a video display board in an IBM AT, and each neuron vector is 16 elements long, with 16 grayscale levels in each
element. The input light is a 30 mW He-Ne vertically polarized laser beam. An adjustable half-wave plate (HWP) is
used to rotate the initial polarization angle of the beam, a spatial filter pinhole (PH) is used to remove spatial noise
from the beam, and the beam is then collimated by the objective lens (OL) and lens L1.

The light from the LCTV passes through a polarization analyzer which is oriented orthogonally to the HWP, thus
converting the LCTV polarization data into amplitude-modulated data. Cylindrical lenses L 2 and L 3 expand the
beam horizontally, and two additional horizontally-oriented cylindrical lenses (not shown for clarity) vertically image
each set of PI pixels onto one row of the interconnection matrix encoded in the mask at P2. Transmission of the light
through the mask accomplishes the multiplication of the input neuron vector with each row of the interconnection
matrix. The light is then integrated in the vertical direction by the cylindrical lens L4, and focused onto the detector
array at P3, which is an integrated array of 16 PIN photodiodes. This detected result is the matrix-vector product of
the PI neuron vector with the P2 interconnection weight matrix. The P3 output is then fed to the IBM AT where
the bias vector is added to the matrix-vector product, the result is multiplied by 41 and subtracted from the previous
neuron vector, and the nonlinear neuron function is applied. The computed result is then input to the LCTV for the
next iteratior', thus completing the hybrid optical-digital system. The laboratory system has a 16-neuron capacity,
therefore it can accomodate a four-target MTT problem.

The optical system shown in Fig. 5 has been simulated to determine the major error sources and to predict the
laboratory results. The neuron update including error sources is

x(t + 1) = f[X(t) - 4r/(MnE(t) + 4)], (14)

where the error source terms are :

M. : mask including nonideal transmission characteristics and nonuniform beam illumination effects

x,,(t) : nonideal LCTV transmission (input neuron) values

The extra factor of 4 inside the brackets allows the use of an optical mask on film, which has a maximum transmission
value of one, instead of the maximum value of four required in the interconnection matrix. Thus, the values of the
mask matrix M. are 1.0, 0.5, and 0.0.

The mask matrix M, is the mask M with nonideal pixel values, which may have maximum transmission values
less than 1.0 and minimum transmission values greater than 0. Additionally, the mask pixels are multiplied by
a nonuniform (Gaussian) beamfront which varies with the effective beam radius. The input neuron values x(t)
from the LCTV may also have maximum values less than 1.0 and minimpin values greater than 0, due to nonideal
transmission characteristics of the LCTV. The neuron values, mask values, and detected results also have quantization

8



effects included. Other error sources which are not included in Eq. (14) are detector dark current noise, time-varying
detector noise, detector gain variations, and non-uniformity and nonlinear gain in the PI elements. We use two
scenarios with N,,, = 4 targets and measurements per frame. The d vectors used are shown in Table 3. Simulations
of the optical lab system for both scenarios indicate that detector noise levels of 0.01 or lower have no effect on the
results (our integrated detector array has noise levels of 0.001). Simulations have not yet been conducted to question
neglecting the other P1 error sources (since their effects should be included in our quantization tests).

The simulation repeatedly computes the neuron values according to Eq. (14). At the start of an iteration, the input
neuron values are quantized to 4 or 3 bits within the nonideal LCTV upper and lower transmission bounds. The mask
values are quantized within the mask upper and lower transmission bounds and also include the nonuniform beam
effects. Quantization of the mask values is not a factor, since only two bits are required for the MIT mask. The
matrix-vector product is calculated, and the detector outputs are quantized to 8 bits (the accuracy of the product of two
4-bit numbers). The quantity in parentheses in Eq. (14) is then calculated in the AT and the results are multiplied by
417 using floating-point values, and this product is subtracted from the previous neuron vector which is also quantized
to 8 bits. The nonlinear sigmoidal threshold is then applied to this result using floating-point values, again as is done
in the lab AT.

Varying the effective beam radius has no effect on the simulation results for either scenario, as a radius as low
as 20 pixels (85% beam uniformity across the 16x16 pixel mask) still yields correct results. A worst-case lab beam
radius would be 30 pixels (93% beam uniformity across the 16x16 pixel mask), thus this is not a significant error
source. The simulation data indicate that the primary sources of error are the nonideal transmission effects of the
LCTV and mask. The more dominant error source is the nonideal LCTV transmission, or lack of a "zero" neuron
input, which is caused by light being transmitted in the LCD off-state. This is best seen when using a difficult MT
scenario which has two close targets, since the error sources have a greater effect on the results then. Simulation
results for one such scenario indicate that an off-state transmission of 4% or more for the LCTV will prevent the
network from converging to the correct solution, even with 4 bits for the LCTV neuron values and no other error
sources present. Likewise, a lower mask bound of 4% results in an error with no other error sources present. When
the LCTV lower bound is 3% and the mask lower bound is 1% or higher, an error results. However when the LCTV
lower bound is 1%, a m;'sk lower bound as high as 3% causes no errors. All of the above values were obtained
with A = B = C = 1.0, 7 = 0.2, and uo = 0.2. The second scenario is much more difficult. Thus we see that the
LCTV lower bound has more of an effect. The nonzero lower bounds produce an unwanted bias in the matrix-vector
product, which ultimately changes the value of the gradient and thus the direction of search. That the LCTV lower
bounds should have more of an effect than the mask lower bounds is evident when the process is modeled as

(M + MrB)(_(t) + !LB) = M(t) + MLBX(t) + M:_LB + MLBLB, (15)

where MLB is a constant matrix of the mask lower bound and _LB is a constant vector of the LCD lower bound.
Since _(t) is a sparse vector (mostly zeros) and XLB has nonzero values for every element, the effects of ZLB will in
general be greater than those of MLB.

The LCTV in our lab system has a measured off-state transmission of 1.4%, which simulations indicate is
sufficient for a correct solution with a mask lower bound of zero for the given scenario. The mask lower bound in
the present lab system is 17%. A mask lower bound of 4% or greater combined with the LCrV 1.4% lower bound
produces an error in the simulations for the difficult (second) target scenario. Laboratory results bear this out, as
an incorrect solution was initially obtained for this case. The bias produced by the lower LCTV bounds can be
compensated for by reducing the step size iq, or by adjusting the slope of the thresholding function f[ ], but simulations
indicate such methods increase the risk of converging to erroneous solutions. Instead, the bias was compensated for
by reducing the A and B coefficients used to compute Dij in Eq. (2). Simulations produced a correct solution when
the A and B values were reduced by one half, and the step size r was cut in half to 0.1. The simulations indicate this
new bias vector and step size allow a combination of 10% for the LCTV lower bound and up to 17% for the mask
lower bound. If the LCTV lower bound is 5% or lower, a mask lower bound of 20% or lower is acceptable.
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Element No. Vector I Vector 2

2 6.00 3.50 "
3 77.00 -0.25
4 82.75 6.75

5 4.75 3.506 -U.OO 1 ~
1 7 f44.70 "1.25

8 54.75 5.75

9 80.00 0.50
10 42.50 1.5011 1400 1 1-0.7L]
12 5.50 r 425

13 70.50 3.75
14 47.50 0.75

15 E] 55.00 1.50
16 T-.OJ |-05-

Table 3: Initial distance vectors for MTT

Vector 1 Results

1 0.06 0.06 0.06 0.06 0.06 .0. 06 0.06 0.06 0.06 0.06

2 0.97 0.00 0.00 0.00 0.00 0.5 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.97
3 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00

400 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0 0.00 0.00 0.00 .0
QUANTIZED r 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 .00

Vector 2 Results

0.I 0.0u006 es Dintec~ot I Slofte b6: lAwiuind 0.6 6 0.0 .0 00
1 0.06 0. 06 •.06 • .0 . U. 06 •. 06 0.06 0.06
2 0.61 0.00 0.76 0.00 0.00 0.23 0.00 0.00 0.11 0.00 0.9 0.0 0.00 0.00 0.00 0.99
3 0.72 0.00 0.73 0.00 0.00 0.22 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
4 0. 0.00 0.45 0.00 0.00 0.18 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00

a 0.1" 0.00 0.33 0.00 0.00 0.26 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
6 1.00 0.00 0.33 0.00 0.00 0.28 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
7 1.00 0.00 0.33 0.00 0.00 0.30 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
8 1.00 0.00 0.32 0.00 0.00 0.32 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
* 1.00 0.00 0.31 0.00 0.00 0.37 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
10 1.00 0.00 0.33 0.00 0.00 0 .44 0.00 0.00 0.00 0.00 1.0 0.00 0.00 0.00 0.00 1.00
11 1.00 0.00 0.30 0.00 0.00 0o 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
12 0. 0.00 0.27 0.00 0.00 0.67 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
13 0.19 .00 0.22 0.00 0.00 0.T7 0.00 0.00 0.00 0.00 1.00 0.00 0.00 00 .00 1.00
14 6.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
IS 0.0 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
1 0.09 0.00 0.06 0.00 0.00 0.80 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
17 0.99 0.00 0.05 0.00 0.00 0.6o 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.0 0.00 1.00
10 0.0 0.00 0.06 0.00 0.00 0.7? 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
17 0.99 0.00 0.05 0.00 0.00 0.57 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
20 1.00 0.00 0.06 0.00 0.00 0.65 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
21 0.99 0.00 0.06 0.00 0.00 0.74 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
220 .00 0.00 0.05 0.00 .00 0.67 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
23 0.0 0.00 0.05 0.00 0.00 0.70 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
24 0.00 0.00 0.0S 0.00 0.00 0.81 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
25 0.00 0.05 0.00 0.00 0.71 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.0

0-"TZE LLI .0 0.00 0 0.00 0.00 0.73 00.00 0.00 0.00QUASTIZED OO 0. 00 O 0 .00 .00 .00 N. :- o.O0Z 00 del O0Z 0.90 0.00 0.001

Table 4: Output data for MTT tests
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Laboratory results agree with the simulation, as the correct solution was found for both the simple scenario
(vector I in Table 3) and for the difficult scenario with A = B = 0.5 (vector 2 in Table 3). The lab results for both of
these four-target problems are shown in Table 4. The matrix M in both cases is

1.0 0.5 0.5 0.5 0.5 0 0 0 0.5 0 0 0 0.5 0 0 0
0.5 1.0 0.5 0.5 0 0.5 0 0 0 0.5 0 0 0 0.5 0 0
0.5 0.5 1.0 0.5 0 0 0.5 0 0 0 0.5 0 0 0 0.5 0
0.5 0.5 0.5 1.0 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5
0.5 0 0 0 1.0 0.5 0.5 0.5 0.5 0 0 0 0.5 0 0 0
0 0.5 0 0 0.5 1.0 0.5 0.5 0 0.5 0 0 0 0.5 0 0
0 0 0.5 0 0.5 0.5 1.0 0.5 0 0 0.5 0 0 0 0.5 0

M= 0 0 0 0.5 0.5 0.5 0.5 1.0 0 0 0 0.5 0 0 0 0.5 (16)
0.5 0 0 0 0.5 0 0 0 1.0 0.5 0.5 0.5 0.5 0 0 0
0 0.5 0 0 0 0.5 0 0 0.5 1.0 0.5 0.5 0 0.5 0 0
0 0 0.5 0 0 0 0.5 0 0.5 0.5 1.0 0.5 0 0 0.5 0
0 0 0 0.5 0 0 0 0.5 0.5 0.5 0.5 1.0 0 0 0 0.5

0.5 0 0 0 0.5 0 0 0 0.5 0 0 0 1.0 0.5 0.5 0.5
0 0.5 0 0 0 0.5 0 0 0 0.5 0 0 0.5 1.0 0.5 0.5
0 0 0.5 0 0 0 0.5 0 0 0 0.5 0 0.5 0.5 1.0 0.5
0 0 0 0.5 0 0 0 0.5 0 0 0 0.5 0.5 0.5 0.5 1.0

The coefficients used in Eqs. (1) and (2) were CI = C2 = C3 = 1, with A = 7, B = 17672 for vector I and
A = B = 0.5 for vector 2. Both vectors are shown in Table 3. A distance of zero (perfect match) corresponds to a
vector element of -I, as shown in Eq. (13) (note that d = D/4). The results for both vectors ae shown in Table 4,
where a timestep of r/= 0.2 was used for vector l and a timestep of i? = 0.15 was used for vector 2. Both runs used
uo = 0.2.

Conclusions

We have demonstrated a neural network designed to perform multiple target data association. The network
converges rapidly to the correct solution in the absence of target jitter measurement noise, and in the presence of
moderate levels of jitter noise. A hybrid optical-digital lab system exists and has been simulated, with major error
sources included. Simulation and lab results yield correct solutions for two four-target MTr problems, including a
difficult tracking scenario. These results indicate that the simulation of the lab system is a valid one, and that the lab
system is useful for the MT optimization neural net application.
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Abstract

A three-component system for tracking multiple moving objects is presented. A neural network is used to perform
frame-to-frame data association. A Hough Transform system is used to perform multiple-frame data association
and track correction. An estimation filter system is used to provide updated track estimates. The tracking ability
of this integrated system is tested with realistic simulated flight trajectories. The system response to simulated
measurement noise and estimation errors is detailed, and the interaction of the three system components to correct
errors is illustrated. Optical processing is used in the neural net and Hough Transform systems.

1. Introduction

Some automated military defense systems must have the capability to track multiple moving targets simultaneously.
Airborne targets move rapidly and thus require fast real-time computations. The multiple target tracking (MIT)
problem becomes quite cumbersome for even moderate numbers of targets, as the number of computations is subject
to combinatorial explosion, therefore conventional sequential processing techniques are inadequate. A solution to the
MIT problem is presented here which uses parallel optical processing techniques.

The overall MIT problem has been studied in detail [ 1, 2, 31 in recent years, with an emphasis on the complexity of

the data association problem [3]. The division of a complete MTT system into several subsystems is straightforward
and has been discussed in detail [2]. The subsystems in our MIT system [4] are illustrated in Fig. 1.

We divide the tracking problem into five major parts shown in boxes in Fig. 1. The fifth pait, track evaluation, is
used for error correction of the other parts of the system. Detection locates targets in image frames of data, where the
targets may be hidden in significant background noise. The measurement outputs from detection may be actual targets

or false detections, called clutter. Track Initiation accumulates a long time history of detection outputs over multiple
frames and determines when enough hits on a target have been received to assert that a target (and its associated
track) truly exists. The Data Association block looks at one frame of data and assigns its measurements to estimates
(from the estimator) which are associated with existing target tracks. The newly assigned measurement information
is used to update the individual estimates after each frame of data. The Track Evaluation block examines each track
and the estimates to determine if they are valid and provides correction as needed. The entries at the bottom of Fig. I
indicate how each of the 5 blocks are implemented in our full system. Detection is achieved with an optical correlator



TRACK
INITIATION

INPUT DEETO oSTATE 0-OUTPUT
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Figure 1: Multitarget Tracking System.

[5, 6]. The track initiation is performed by an optical Hough Transform [7], and the track evaluation and correction
uses this information. Data association is performed by an optical neural network which was detailed previously
[4, 8]. The estimator predicts the future state vector for each target in the next frame of data. The estimates are
obtained digitally with a filter with fixed coefficients (if the scenario involves fairly stable target states and tracking
conditions), or a Kalman filter (if the scenario is dynamic but has limited target maneuvering, acceleration, etc. [2]),
or an Extended Kalman filter (if the sensor measurements are nonlinear, such as the azimuth and elevation data from
a radar system [9]), or a bank of Kalman or Extended Kalman fiters (if the maneuvers are very dynamic and require
different acceleration models [10]).

Our present work reported upon concentrates on examining the response of this MTT system to simulated
measurement noise in terms of the subsystem interactions. In particular the estimation and evaluation/correction
subsystems are examined in detail. Section 2 discusses target state estimation, Section 3 details the track evaluation
and correction subsystem, and conclusions are presented in Section 4.

2. Target State Estimation

2.1 Estimator

A target's state is typically defined as the target position, velocity and acceleration vectors at a given time [2].
Estimates of the target state are made on the basis of measurement information about the target. Real-time estimation
requires recursive updating of the target estimates using the data association information and the new measurements
available at each sampling interval. The new measurement information is combined with the previous estimate to
produce a new estimate. The notation used (for one target) follows:

Xz(k), the position vector measurement at time k.

vo(k), the velocity vector measurement at time k.

f(klk), the position vector estimate at time k given information through time k.

6(klk), the corresponding velocity vector estimate.
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A(klk), the corresponding acceleration vector estimate.

1(k + l k), the predicted position vector estimate at time k + I given information through time k.

6(k + Ilk), the corresponding predicted velocity vector.

The particular estimation filter chosen was the fixed coefficient filter, otherwise known as the C-/3-y filter [2].
This was done to see whether a relatively simple filter offered acceptable performance. The filter equations are

!(klk) = f(klk - 1) + afxo(k) - i(klk - 1)], (1)

O(klk) = 0(klk - 1) + f3vo(k) - 0(klk - 1)], (2)

d(klk) = a(k - Ilk - 1) + (7 /T)[v(k) - vo(klk - 1)], (3)

1(k + Ilk) = f(klk) + Tf(klk) + (T2I2).&(klk), (4)

O(k + ilk) = O(klk) + Ta(klk), (5)

where T = 0.1 is the measurement sampling time in seconds. The states are initialized (at frame k = 1) by

i(II) = (2l1)=xo(1),

f(1ll) = b(2J1)=vo(1),
d(ill) = 0,
a(212) (/T)[vo(2)-v,(l)].

The performance of the fixed-coefficient filter was evaluated via simulation runs in conjunction with outputs
from the data association neural network detailed elsewhere [4, 81. Data association (DA) is performed between the
target estimates and measurements on a frame-by-frame basis, with assigned measurements (from the DA) used to
update existing estimates. These estimates are in turn fed back to the DA subsystem for association of the next set
of measurements. The fiters were first run with perfect DA assumed, in order to determine the best coefficients
(a, 3, -y) to use. Simulated filtering was performed while varying the coefficient values. The combination yielding
the lowest estimation errors (averaged over all time frames) was a = 0.3, # = 0.7, and "y = 0.5, which are the values
used in the DA-estimation tests.

2.2 Simple Estimator and % DA errors

The DA-estimation tests used simulated target data detailed elsewhere [4, 8], and briefly reviewed here. The
targets are missiles simulated during the first 120 seconds of boost phase. Ten point targets and ten clutter points are
present in each time frame for a signal-to-noise ratio of one. Position and velocity measurements are available for
each target and clutter point. All measurements art in x-y cartesian coordinates. Different amounts of measurement
error (jitter) are introduced into the simulation, ranging from jitter level I (lowest) to level 6 (highest). The different
jitter levels used are quantified in terms of their standard deviations in Table I. (The position values are in meters,
and the velocity values are in meters/sec.) The levels are percentages of the average target positions and velocities in
the time frames used, and these percentages are also shown in Table 1.

Our first concern was to test if the simple fixed-coefficient filter was sufficient. The measurements with clutter
and jitter were fed to the DA-estimator for ten consecutive time frames, with the first two frames used to initialize the
target estimates. Thus, DA and estimation were performed for eight time frames (seven time frame pairs) for one set
(scenario 1) of early time window data (34.5-35.5 seconds after launch). Without jitter, the DA neural network (NN)
performed perfectly and estimation errors were negligible, even with SNR=1. Errors only occurred when jitter was
introduced into the measurements. The estimation and DA NN performance over the eight time frames are shown
in Table 2 for the three different jitter levels used. The percentage error (accuracy) of the four estimates are given
together with the percentage of the neuron DAs in error and the number of NN iterations. As seen, no DA errors
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jitter % jitter standard deviation
level errors ao avp axv a:,,

1 0.15 7 76 0.2 0.2
3 0.3 15 177 0.5 0.5
6 1.0 44 505 1.5 1.5

Table 1: Jitter levels as standard deviations and average percentages.

jitter % estimation errors % of neurons no. of
level P., PV v, vLv in error iterations

1 0.0 0.005 0.04 0.1 0.0 10
3 0.0 0.01 0.1 0.3 0.0 10
6 0.0 0.03 0.3 0.9 0.6 20

Table 2: DA errors and % estimation accuracy with jitter for estimate/measurement associations.

occur at jitter level 3. Errors only occur at jitter level 6. The percentage estimation errors (Table 2) are less than the
jitter errors (Table 1), and no DA errors occur at jitter level 3, thus the simple fixed-coefficient estimator is sufficient.
At jitter level 6 (1% jitter) DA errors occur, the percentage estimation errors increase, and more NN iterations are
required. We note that our fixed-coefficient estimator provides much more error in the velocity estimates than in the
position estimates, but these are always less than the input jitter errors.

% jitter % estimation % of neurons
errors errors in error

0.3 0.3 0.0
0.3 0.7 0.0
0.3 1.0 0.05
0.7 0.3 0.0
0.7 0.7 0.0
0.7 1.0 0.15
1.0 0.3 0.35
1.0 0.7 0.33
1.0 1.0 0.50

Table 3: DA performance for different % amounts of jitter and estimation accuracy with clutter.

2.3 Estimation accuracy required

To quantify the estimation accuracy required, we varied it for three different percentage jitterlevels between level 3
(0.3%) and level 6 (1.0%). As shown in Table 3, no DA errors occur for 0.7% jitter and 0.7% estimator accuracy,
and very few DA errors occur even with 1% jitter and estimation accuracy. These data are averaged over all three
scenarios and time windows, and thus we expect the simple fixed-coefficient estimator to suffice. Further tests with
better position accuracy than velocity accuracy could be performed and could allow lower accuracy and more jitter.
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For now, low 0.7% accuracy suffices (or even 1% with less jitter). The simple estimator is preferable to a Kalman
filter (one per target is needed) in terms of system hardware requirements. Although building large banks of Kalman
filters using systolic arrays has been proposed [I I ] and appears feasible, they represent considerable hardware and
,-3. We note that these DA error rates are less than ones we obtained earlier [4] with measurement-to-measurement

association.

3. Track Evaluation and Correction

3.1 Hough Transform

The track initiator we use is an optical Hough Transform (HT) [6, 7]. Since the target tracks in our scenarios are
linear for a number of frames, a straight-line HT suffices here. This is done by applying the HT to an image which
represents several accumulated (stacked) time frames of measurements. The HT maps points (x, y) into Hough space
(p, 0) by the relation

p = x cos(0) + y sin(0), (6)

which produces a sinusoid in Hough space. The sinusoids are summed for all points in the image, and the sinusoids
for points on a line will intersect at one point in Hough space. Therefore several collinear points in the image produce
a peak in HT space, and detecting straight-line target tracks becomes a simple matter of detecting these peaks. The p
and 0 values of a peak indicate the length and angle of the normal from the line to the origin, thus specifying the line.
The height of the HT peak indicates the number of points (hits) on each line (target track). Generalized HTs [12, 13]
to detect different shaped curves are also possible. Techniques to locate the position of each line segment containing
the points (hits) also exist (but are not used here).

3.2 HT for track initiation

Before DA begins, target tracks have been established (by a HT or other technique). In early boost phase, target
points are hotter and often extended objects (plumes, etc.) can be tracked, and ground-based sensors (with lower
jitter) can be used.

3.3 Overview of HT for DA evaluation and corection

We consider forming composite stacked frames of measurements (after DA has begun) and stacked frames of
estimates. From the HT of these (measurement HT and estimate H. we use both long-term global (track initiator)
and local (two-frame DA) data to detect and correct DA and other errors. In our measurement HT, we also consider
including a number of frames of nearly ideal (no jitter) target track data prior to the frames (with jitter) used in DA
processing (we refer to this as a track initiation and measurement HI3. Table 4 lists six uses and issues associated
with the HT track evaluation and correction. We now discuss and provide examples of many of these uses. The
motivation for this is that DA errors must be corrected or tracks will be lost [4, 8], and that the longer global time
history HT measurement provides such data.

3.4 HT to automatically merge tracks (Target clusters) - Issue SC

Figure 2a shows the ten targets for one second of the early time window for scenario 1, with no clutter or jitter.
The individual tracks are numbered 0-9 in the figure. We find three merged tracks and two collinear tracks. Tracks
are merged for targets 0 and I (track 0), and targets 4 and 8 (track 4), and are merged and collinear for for targets 3,
6, and 7 (track 3). The HT of Fig. 2a shown in Figure 2b has six peaks locating the six expected tracks, due to the
reduced HT resolution (Ap = 3, AO = 8) used. Thus the HT automatically produces target clusters. The HT peak

5



issue no. description
(1) How often (no. frames) compare measurement HE and

estimate HT? With what clutter and jitter?
(2) If two HTs agree, no DA errors (Ap = 1, A9 = 50).
(3) Newly initiated tracks if HT measurement peaks not in HT

estimates (and > 5 HT resolution cells away).
(4) DA/Estimator errors if HT measurement peaks not in HT

estimates (and < 5 liT resolution cells away).
(5A) DA/Estimator error due to Data Dropout. HT measurement

peak value does not change between two frames.
(5B) Crossing targets (in same time bin).

HT peak (5A) denotes this also.
(5C) Merged tracks (close and nearly parallel). HT measurement

peak will be larger than others and split, etc.
(6) High jitter. If HT measurement peaks fade and HT estimate peaks are present

(within 5 HT resolution cells), use DA (lower P) rather than HT information,
or jitter correct HT and DA measurements with detection algorithm

.Table 4: HT track evaluation and correction uses.

values for tracks 0 and 4 (13) are larger than those for tracks 5 and 9 (10) and track 2 (9), which indicates two merged
tracks. The HT peak value for track 3, which consists of three tracks, is the largest (14) and has two nearby peaks.
Thus, we can easily detect the presence of target clusters and which tracks are in clusters.

3. HT with jitter (number of time frames required) - Issue 1

If no prior track history is used and if the HT measurements are used (starting from when the DA begins), then
the presence of jitter significantly affects the detectability of HT peaks. For the three jitter levels 1, 3, and 6 (with
clutter), Table 5 shows that 10 frames provide detection of all six tracks expected up to jitter level 3 (but 20 frames
are needed and only four tracks are detected at jitter level 6). Thus, with reasonable jitter (level 3), the HT is of use
and we would use the 1T every N=10-20 frames to evaluate the DA. The high jitter (level 6) case is addressed more
fully in Section 3.9.

jitter no. tracks no. frames
level detected used

1 6 10
3 6 10
6 4 20

Table 5: HT track detection results with jitter.

3.6 HT data dropout detection - Issue SA

Figure 3 illustrates the dropout detection capability of the HT. Track 9 in Figure 3a is shown with target detections
present for all 10 frames, and with clutter and no jitter present. Figure 3b shows the HT of all target tracks, with

6



zg

. * -.

(D (D)

(a) Targets with clutter, no jitter

(a) Targets with no clutter, no jitter

(b) HT of (a)

(b) HT of (a) with reduced resolution

(c) HT with Tgt 9 dropouts

Figure 2: HT to merge tracks (Target Clusters) Figure 3: HT dropout detection

7



X X X 0 0
X X X o0 0

x 3x X X 0
XX 0 X 0

(a) Input Measurements (b) DA/Estinates

(c) HT of measurements (d) HT of estimates

Figure 4: LIT with merged measurement DA error

x A 5 03x

x 410xx

1 x

(a) DA with error (b) HT corrected DA results
0=true tgt, X = noise

Figure 5: DA error corrected by HT pea mismatch

8



the peak for track 9 numbered. Figure 3c shows the HT of the same scene with three points (hits) removed from
track 9. The peak height for track 9 has fallen from 10 to 7, thus indicating the loss of three hits on the target. This
information is used to correct the DA/estimator, which will tend to lose track on any target with dropouts.

3.7 HT correction for crossing targets - Issue SB (and Issue 2)

Figure 4a illustrates a scenario where targets I and 2 are crossing (in clutter), and they have a merged measurement
in the fourth time frame. After time frame 4 the DA/estimator maintains track on target I but loses track on target
2, as shown in Figure 4b. The HT of the measurement data is shown in Figure 4c, and it has peaks (height 10) for
both tracks. The HT of the estimate data (Figure 4d) has a peak of the same height (10) for track 1, and the peak
for track 2 is significantly reduced (height 4). Comparison of the two HTs indicates a DA/estimator error for track 2
(and track I indicates a case, issue 2, where the estimate and measurement UT data agree), thus merged measurement
errors for crossing targets are easily detected and corrected.

3.8 HT correction of DA errors - Issue 4

Figure 5a shows an example of a DA error at time frame 3, which results in erroneous estimates and DAs in
subsequent frames. The measurement HT will have a peak corresponding to the correct track, while the estimate HT
will have no such peak (due to the resulting estimation errors). Comparison of the HT peaks results in correction as
shown in Figure 5b, where the correct straight-line track is established from the measurement HT data.

Figure 6 shows 10 target tracks for 50 time frames (scenario 3) to make them more apparent with clutter (SNR=1)
present. When jitter level 6 is also present, as shown in Figure 7, track detection is nearly impossible. However, the
DA can maintain reasonable (> 99%) correct associations (Table 6). Thus, the DA is preferable (although one can
expect tracks to be lost in time). An alternative in such cases is to use the track initiation data obtained at the start
of tracking in conjunction with additional HT data obtained during periods of high jitter. (Track initiation data from
either a HT or its equivalent must exist prior to the start of any tracking.) However, initial results indicate that even
with this technique, HT data does not seem to be reliable with high jitter.

Thus, the solution we employ is to correct for jitter by applying a modified version of the detection algorithm
(register subsequent frames, shift each new frame based upon background shifts, and subtract these registered frames)
to each set of input measurements to the DA. Any residual jitter from such processing is expected to be negligible.

3.9 HT in high jitter - Issue 6

jitter estimation % of neuron
level errors (% acc) DA errors
1.0% 0.3% 0.35%
1.0% 0.7% 0.33%
1.0% 0.7% 0.50%

Table 6: DA NN excellent performance in high jitter level 6.

3.10 DA NN time evolution example

Figure 8a shows six targets in each of five time frames superimposed (clutter is not shown) and coded by frame
number. This vividly demonstrates the difficulty in associating the proper measurements in all frame pairs. Fig 8b
shows the proper tracks. Figure 9 shows the DA NN neurons (as a matrix) at several tinmes in its iterative evolution
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for a single frame pair. The final neuron states (Figure 9d) properly associate the six targets A-E in both frames (the
neuron matrix has one "I" per row and column in the proper location).

3.11 HT to adjust DA NN parameters

The liT is also useful for determining some of the coefficients used in the DA neural network. As detailed
elsewhere [4, 8], the neural network uses a bias vector D which consists of weighted sums of the squared position and
velocity differences between all measured points. The coefficients A (position) and B (velocity) used are determined
by the average position and velocity differences of the measured points. The HT of the measured data gives a rough
estimate of the average position differences via the p and 0 values for each target peak. In the case of the scenario
of Figs. 2 and 3 the average difference in p values is 0.55 kin, which indicates the average track separation (in x)
since the tracks are nearly parallel. (Simple trigonometry relationships can be used with nonparallel tracks by using
0 values as well). This information is used to select the A and B values, which are related to the distance between
tracks. These values are based on simulated DA NN runs, and the results are shown in Table 7. We note that while it
was used here, five-digit accuracy is not necessary for the NN coefficients.

time coefficients
window A B

early 7 17672
intermediate 2 2360

late 0.2 432

Table 7: Neural net coefficients used for each time window.

4. Summary

We have described a full hybrid optical/digital MIT system. The optical data assocation NN gives excellent
performance in clutter and jitter. The DA/estimator gives perfect performance with jitter and estimation percentage
errors of 0.7%. A simple fixed-coefficient estimator appears to be sufficient. An optical HT was shown to be most
useful for track evaluation and DA/estimator corrections. We have shown and discussed its use in cluster tracking,
data dropout and DA error correction, to initiate new tracks, and handle merged crossing targets. High jitter is
elminated through use of the detection algorithm for frame registration.

5. Acknowledgments

Funding for this research was provided by the Strategic Defense Initiative Office of Innovative Science and
Technology monitored by the Office of Naval Research.

11



References

[1] 0. Drummond and S. Blackman, "Challenges of developing algorithms for multiple sensor, multiple target
tracking," Proc. SPIE 1096,244-255 (1989).

[2] S. Blackman, Multiple-Target Tracking with Radar Applications, (Artech House, Norwood MA, 1986).

[3] S. Blackman, "Theoretical Approaches to Data Association and Fusion," Proc. SPIE 931, 50-55 (1988).

[41 M. Yee and D. Casasent, "Measurement-based neural net multitarget tracker," Proc. SPIE 1305, 251-262 (1990).

[5] D. Casasent, B. V. Kumar, and Y. Lin, "Subpixel Target Detection and Tracking," Proc. SPIE 726, 206-220
(1986).

[6] D. Casasent, Y. Lin, and J. Slaski, "Optical multi-target sub-pixel detection and track initiation," Proc. SPIE
881, 12-27 (1988).

[7] D. Casasent and J. Slaski, "Optical track initiator for multitarget tracking," Applied Optics 27, 4546-4553
(1988).

[8] M. Yee and D. Casasent. "Multitarget Data Association Using an Optical Neural Network," Submitted to

Applied Optics.

[91 A. Gelb, Applied Optimal Estimation, (MIT Press, Cambridge MA, 1974).

[10] E. Emre and J. Seo, "A unifying approach to multitarget tracking," IEEE Trans. AES 25, 520-527 (1989).

[11] T. Phillips and R. Fabrizio, "Systolic Architecture for Extended Kalman Filtering," Proc. SPIE 826, 33-40
(1987).

[12] D. Casasent and R. Krishnapuram, "Detection of target trajectories using the Hough transform," Applied Optics
26, 247-251 (1987).

[131 D. H. Ballard, "Generalizing the Hough Transform to detect arbitrary shapes," Pattern Recognition 13, 111-122
(1981).

12



CHAPTER 8

"MULTITARGET DATA ASSOCIATION USING AN OPTICAL NEURAL NETWORK"

M. Yee and D. Casasent



[Paper accepted for publication in APPLIED OPTICS, scheduled to be
published in the November 1991 issue]

Multitarget Data Association Using an Optical Neural Network

Mark Yee and David Casasent

Center for Excellence in Optical Data Processing

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

A neural network solution to the data association problem in multitarget tracking is presented.

It uses position and velocity measurements of the targets over two consecutive time frames. A

quadratic neural energy function results that is suitable for an optical processing implementation.

Simulation results using realistic target trajectories with target measurement noise including

platform movement or jitter are presented. The results show that the network performs well when

track data is corrupted by significant noise. Several possible optical neural network architectures

to implement this algorithm are discussed, including a new all-optical matrix-vector multiplication

approach. The matrix structure is employed to allow binary/ternary spatial light modulators to be

used.
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I Introduction

The problem of tracking many moving targets simultaneously has received much renewed

attention in recent years due to potential applications in the Strategic Defense Initiative (SDI),

although other applications such as air traffic control also exist. Of particular interest is the data

association problem in multitarget tracking, or the process of determining which measurements

taken at different sample times should be assigned to which targets. Data association is subject

to combinatorial explosion as the number of targets increases. This indicates the need for the

proper algorithm and a parallel processing approach. A parallel computing architecture based on a

Hopfield neural network is presented here as a solution to the data association aspect of multitarget

tracking (MTT).

It is assumed that multiple sub-pixel targets are present in a given field of view over several

data sampling intervals. At each new sampling time, or time frame, the data association

system is presented with new target measurement data, assumed here to be position and velocity

measurements of targets within the sensor's field of view. A single active sensor such as a

laser radar can provide this type of measurement data. (While a passive IR sensor can also

provide velocity information if additional processing is employed, it is advantageous to eliminate

as much preprocessing as possible.) Data association can be defined as assigning some or all of

the new measurements from the current time frame to previously established target tracks. The

tracks are assumed to be established by a separate track initiation subsystem. Data association is

further complicated when targets are close together or crossing, and when spurious measurements

and measurement errors are present. Once assigned, each measurement is used to update its



corresponding track through the use of an estimation filter (such as a Kalman filter), which

computes new target state estimates based on the previous estimate and the new measurements.

Data misassociations can severely corrupt the stored target track estimates or even result in lost

tracks. Data association is the most critical and computationally intensive part 1 of MIT and it

therefore deserves special attention.

A MTT system requires track initiation, data association, target state estimates, and interactions

between these various subsystems. Prior data association and neural net work is noted in Section II.

We consider data association using only measurement data not target state estimates. Section III

develops our basic neural net energy function and evolution equations. A matrix-vector formulation

for parallel optical implementation is then provided in Section IV. Section V describes the simulated

multiple target data, and simulated tracking results are presented in Section VI. Section VII presents

a new all-optical approach to the neural network implementation, and describes how the attractive

structure of the neuron interconnection matrix can be effectively used in a new approach using

spatial light modulators (SLMs). Conclusions are presented in Section VIII.

II Data Association Algorithms

11.1 Standard Techniques

There are a number of suggested approaches to the data association problem. The simplest is

the nearest-neighbor approach 2, which assigns each measurement to the "nearest" track, using a

distance measure that can be either deterministic or stochastic. This is an example of a one-to-one
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assignment approach, where each track is assigned a single unique new measurement. The

Munkres algorithm 3 can be used to conduct an efficient search for the optimum nearest-neighbor

assignments. Unfortunately measurement errors or clutter points may cause misassociations to

occur, which can be a significant problem with one-to-one assignments. By contrast the all-

neighbor approach uses all measurements which are within a given distance, or gate, of each track

for sub-optimal estimation. One example of this is the joint probabilistic data association (JPDA)

algorithm 4, which combines all gated measurements into weighting factors for each Kalman filter

track estimate. The drawback is that the calculation and storage requirements are larger than the

nearest-neighbor approach. However a new formulation of the JPDA algorithm has improved this,

and an optical realization of this efficient JPDA method has been detailed 5. Both the nearest-

neighbor and JPDA algorithms make assignment decisions on a frame-by-frame basis, associating

existing tracks with new measurements as they are obtained. An alternative to this is the multiple

hypothesis tracking (MHT) algorithm 2, which considers multiple assignments of measurements

and tracks over several time frames and does not enforce one-to-one correspondence. This

essentially postpones the assignment decision until a later time when more information is available

(through additional measurement data), and the hypothesized track with the greatest a posteriori

probability of being correct is selected. While MHT reduces the detrimental effects of measurement

errors and clutter, the number of hypothetical tracks can quickly become unmanageable with even

a moderate number of targets.
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1.2 Track Initiation Techniques

In our full MIT system 6, we use multiple frames of data for track initiation (this analyzes the

measured data for a number of frames after data assocation) to confirm that a target is present. In

standard data association algorithms, track initiation precedes data association (this is not so in our

system). The use of multiple frames of data in MHT is an appealing aspect of the algorithm, since

the inclusion of more data will invariably help compensate for noise and clutter problems. There

have been several proposed approaches which utilize "stacked" time frames of data, specifically in

the form of registered images of the target positions. By analyzing the pixel patterns with respect

to both the two-dimensional spatial plane (as would be obtained from an IR imaging system) and

the time axis, a three-dimensional spatial representation results. Analysis of the three-dimensional

data then reveals any target tracks in the data. Strictly speaking such algorithms can be classified

as detection/track initiation algorithms rather than data association algorithms, since they utilize

several frames of measurement data rather than a single target estimate-measurement pair. (These

are also referred to as track-before-detect algorithms). For completeness a few of these initiation

algorithms will be summarized.

All tracks within the given stacked time frames can be detected and located using three-

dimensional matched spatial filters. Such a procedure has been suggested using three-dimensional

FFTs and banks of matched filters 7. The computational load is quite high however. Another

suggested method involves performing integrations along many possible linear paths in the 3-D

space 8, using the formidable computational power of the Connection Machine, a digital parallel

processing system. Others have used neural networks to examine stacked frame data. One method

attempts to discern patterns in the 2-D pixel distribution which would indicate the presence of
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tracks 9, while another uses optimization methods to suppress any background noise 10. Each

of these last four approaches 7-10 have expensive hardware requirements, as they require either

one processing element (PE) per pixel, or one PE per pixel per time frame. For a 512x512

image the number of PEs or neurons will be about one million (for four time frames), thus

presenting nontrivial implementation questions. Track initiation in general requires a large amount

of computation and thus significant hardware. We feel that an optical Hough Transform system is

a much more hardware efficient track initiation system as detailed elsewhere 11,12. In this work

we consider only the data association aspect of the system.

H.3 Optimization Neural Net Techniques

The Hopfield neural network has been used previously to solve an optimization problem known

as the "Traveling Salesman Problem" (TSP) 13, where the shortest (optimum) path between several

cities (points) must be determined. The network solves the problem by minimizing a given energy

function which determines the total energy level, or output, of ti- neurons in the network. By

subjecting the energy function to constraints which correspond to the constraints of the optimization

problem at hand, the final neuron output levels can be interpreted as the solution to the problem,

as they should represent the optimum or minimum energy state. Hopfield demonstrated that the

network will always converge to a minimum, although not necessarily the global minimum, when

the weights interconnecting the various neurons are symmetric 14. Therefore the network will

always converge to a solution, although theoretically not necessarily the best or even a correct

one. We have modified the constraints which determine the neuron energy function and can now

use this technique in a number of different optimization problems, including multitarget tracking,
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with the advantage that in practice we find that the optimum solution can be determined in a large

majority of cases.

One neural network data association MiT approach 15 used a Hopfield network for multivariate

optimization, in this case to calculate the weights used in the JPDA algorithm. Since a

nondeterministic method is used, fewer calculations are required than with JPDA implementations

on standard processors. The problem lies in the fact that the network is being used to calculate

analog values. Since the network cannot be guaranteed to find the global minimum, the precision

of the weights cannot be guaranteed. Since the precision of the calculated weights has a direct

impact on JPDA performance this is an area of concern in this neural net technique. Our algorithm

allows use of an analog processor with very few different neuron weight values.

Another Hopfield optimization network 16 for data association used a cubic energy function.

This requires only target position (not velocity) information for the targets over three consecutive

time frames. The problem was constrained such that the targets travel in straight lines with

no acceleration over the three time frames. In addition a one-to-one correspondence between

measurements and targets is enforced. This approach has the advantage of using fewer neurons

than other networks, and converges to valid solutions rapidly. Unfortunately, the requirement of

having little or no acceleration over three time frames may not be met in all cases. In addition the

optical implementation suggested 16, due to the cubic energy function used, requires advanced

optical components that are not yet available.

The network presented in this paper uses a quadratic energy function, unlike the cubic energy

net 16. The energy function selects the nearest-neighbor pairings over two consecutive time
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frames rather than three, again subject to the one-to-one correspondence constraint. .It achieves

data association by using both target position and velocity measurements as inputs. The quadratic

energy function lends itself to a simpler and more easily realizable optical implementation as

detailed in Section IV.

I Constraints, the energy function, and neural evolution

The data association problem is defined here as correctly associating targets by using measure-

ments collected in two consecutive time frames, instead of associating a known target estimate

with a new measurement. Tracking using estimates requires an additional filter subsystem (e.g.

a Kalman Filter) to provide target state estimates, which are then associated with the latest

measurements. This investigation is concerned with data association only, and not with target

estimation, therefore only measurement data (position and velocity) are used.

The problem constraints are defined as follows :

1. Measurements are associated on a nearest-neighbor basis, meaning that targets which are

closest in position and velocity over two consecutive time frames are assigned to each other.

This dastance measure is deterministic, being calculated directly from sensor measurements.

It is assumed there is little or no acceleration of targets over the two time frames, so that the

velocity is relatively constant from one frame to the next. (We note that estimation filters

can include acceleration effects, allowing removal of this last assumption. However, the use

of estimation filters is the subject of future work and is not dealt with here.)
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2. A given measurement is due to no more than one target.

3. A target will produce only one position and velocity measurement pair in a given time frame.

The last two constraints combine to force a one-to-one correspondence between measurements and

targets in each time frame. The one-to-one correspondence constraint forces a unique solution to

the association problem for the two frames. The neural network may still not reach this solution,

due to local minima, but its existence is assured (and we found that the correct solution was found

most of the time).

The cases of merged measurements and dropouts, which violate the one-to-one condition, can

be handled by modification of the neural network parameters. However, merged measurements

rarely occur in the same time frame, and dropouts can be minimized by lowering the sensor

detection threshold. Thus we do not consider these cases in our initial results. It should be noted

that by itself, the one-to-one correspondence requirement can lead to misassociations andlost

tracks. However a multi-frame correction subsystem to compensate for occasional misassociations

and preserve track integrity can be realized 6 utilizing an optical Hough Transform. When

placed within such a context, possible errors resulting from one-to-one constraints are much less

detrimental. We also do not address this in our present work.

We assume Nm2 neurons, where there are N,. measurements in each time frame. (This

is a simple example for the sake of discussion. The network can handle unequal numbers of

measurements in both frames as well.) Each neuron thus represents one of the Nm2 possible

associations between measurements in each of the two different time frames. The activation

level, or output, of a given neuron represents the relative validity of the hypothetical association it
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represents. There is only one valid combination of N.. activated (on) neuron outputs representing

a given set of N,,, measurement pairs in two time frames. With a proper energy function the

net will converge to the correct combination of neuron outputs, indicating which associations are

correct, thus by definition solving the data association problem.

The problem is formulated by assigning each neuron Xj in the network to a possible association

between measurements i and j in two successive time frames respectively. The three problem

constraints yi, d the energy function 17

Nm Nm Nm Nm Nm Nm

E(X) =C:ZZXjD., +C2E(E X,-) 2 +C 3 (E Xa-) 2 . (1)
i i j a i

This function is quadratic in Xej. The first term enforces the nearest-neighbor constraint. The

Dij term is the "distance" between measurements i and j in the first and second time frames

respectively,

Dij = AIjE.4 - &,2112 + BII.*i - Ij2 12, (2)

where Pt is the i-th position vector measurement in time frame t, and Y,t is the i-th velocity

vector measurement in time frame t. The relative distance between measurements is the sum of

the magnitude squared (scaled) differences in their position vectors and their velocity vectors as in

Eq. (2). We calculate these Nm2 distances Dij between all measurements in the two time frames.

Since the neuron values X,, and the corresponding distance measures D,, are multiplied in the

first term in Eq. (1), minimization of the energy function forces those neurons associated with

large distance measures D1j to take on lower values than those associated with smaller distance

measures. Thus the neurons associating measurements which are closest to one another should

have the dominant outputs, and the nearest-neighbor constraint is satisfied.
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The second and third terms in Eq. (1) enforce the second and third constraints, the one-to-one

correspondence of measurements in the two time frames. The second term states that for each

measurement i in time frame t, the sum of the neuron outputs associating all measurements j in

time frame t + 1 with measurement i in time frame t should be equal to one when the energy

function is minimized. Since the neuron outputs are binarized to take on values of zero or one

(which is an implicit additional constraint) this term allows only one of the Nm neurons associated

with a given measurement i to be on, thus satisfying the second constraint. Likewise the third term

in Eq. (1) only allows one of the i neurons in time frame t to be on for a given measurement j in

time frame t + 1, thus satisfying the third constraint. The squaring used in terms two and three

does not affect the constraints, since the terms should be driven to zero for minimization in any

case, and these quadratic elements in terms 2 and 3 (corresponding to squared errors) result in a

useful linear neuron evolution equation.

The coefficients C1 , C2, C3, and A and B in Equations (1) and (2) respectively, are adjusted

to provide relative weights to each of the constraints, allowing some to be enforced more strongly

than others. In general the one-to-one constraints (terms 2 and 3) are weighted equally, since

both parts of the constraint should be equally true. In our work, we set C1 = C2 = C 3 = 1

and control the relative importance of the nearest-neighbor and one-to-one constraints by varying

only the values of the A and B coefficients in Eq. (2). Further, the relative importance of the

position and velocity measurements are reflected in the relative values of A and B, with more

weight given to the more reliable measurements. The A and B values are also determined by the

relative magnitudes of the position and velocity distances. If the position distances are an order

of magnitude different than the velocity distances, then this should be reflected in the relative A
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and B coefficient weights. In selecting A and B, the magnitudes of the D,, values are also taken

into account with respect to the neuron output values in terms 2 and 3 in Eq. (1). These terms are

related to the number of active neurons, which in turn is related to the number of measurements in

both time frames. Higher numbers of measurements require the use of larger values of A and B

to balance the constraints, while lower numbers of measurements require smaller A and B values.

In our work there are thus two free parameters, the A and B coefficients, which directly affect

the neuron energy function and the neural network's performance. It is therefore important to use

as much a priori information about the target scenarios regarding numbers of measurements and

relative distances as possible, so that relatively optimal values of A and B can be used. As we will

show (Section VI), selection of these free parameters is a critical issue and these are chosen for

various scenarios to improve overall data association.

The neural energy function is minimized by the method of steepest descent. While quadratic

functions are usually minimized by taking the derivative and setting it to zero, such a procedure in

this case necessitates inverting a singular matrix, as will be shown in Section IV. Thus an iterative

neural network solution rather than a direct solution is required. It has been shown 14,16 that if

the neuron states Xj evolve in time as OXi/Ot = -OE(X)/OX,,, then the energy or error for

E(X) is minimized. Thus we define

AX~ = OX,, OE(X)_
= t -X1 Dii + 2(j, Xi. - 1) + 2(j, Xj - 1). (3)

Each neuron value is updated in time by iteratively subtracting a fraction q of AX1 from each X,,

until the net converges to a solution. Ideally this is done in continuous time, but in practice the

network is iterated at discrete time intervals. The time evolution of the neurons is approximated
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from time step t = n to t = n + 1 by

X,1(n + 1) = f[Xj(n) - iTAXjj(n)], (4)

where n is the discrete time index and f[ ] is a nonlinear sigmoid thresholding function which will

be discussed in Section IV. We refer to Eq. (4) as the neuron evolution equation. The neuron values

are updated repeatedly using this rule until they converge to relatively stable values. The value

of 17 affects the rate of convergence; larger values can lead to convergence in fewer iterations, but

also increase the risk of oscillating about the global minimum. We used 77 = 0.2 as discussed in

Section VI. Equation (3) can be written in terms of linear algebra as a matrix-vector product (where

the neuron states are vector elements) plus an external vector (associated with the distances Dij).

This determines the form of the N,2XN,, 2 matrix of fixed interconnection weights in the neural

net architecture, which consists of an input layer of fully interconnected neurons (hence the need

for N,, 4 connections for N ,2 neurons). The update vector is then subtracted from the original

neuron vector to complete one iteration as Eq. (4). The matrix-vector formulation we use will

now be detailed.

IV Matrix-vector formulation

The neuron evolution equation is restated as a matrix-vector multiplication by denoting X as

the neuron vector, where each element Xk is a neuron value (or level of activation). Equation (4)

is then rewritten as

Xk(n + 1) = f[Xkj(n) - Y7AXk(n)], (5)
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which is a simple vector subtraction followed by a thresholding. Computation of the "update

vector" AX with elements AXk is written as linear algebra operations by defining a weight matrix

M (with elements Mk,) and a bias vector P_ (with elements D), yielding an update equation of

the form

AXk= MLX. + Dk+ C, (6)

which is simply a matrix-vector multiplication and a vector addition, plus a constant. At this point,

one could solve directly for the neuron values by setting Eq. (6) to zero. Unfortunately the matrix

M (we denote matrices by boldface type) is singular and cannot be inverted, thus preventing a

direct solution and requiring an iterative neural network solution.

The form of M will now be determined. The doubly-subscripted neurons Xj in Equations (3)

and (4) are related to the neuron vector elements Xk by

k = N2(i - 1) + ,(7)

where I < i < N, (where N, is the number of measurements in the first time frame) and

1 5 j < N2 (where N2 is the number of measurements in the second time frame). This assigns the

Xij values to the first N2 elements of the X-vector, the X2j values to the next N2 elements of X,

and so on. A similar relation holds between the Di terms and the elements Dk of D. To proceed

further, we rewrite the update equation (3) as

AXjj = Dij + 2(X~i + X2 +..-- + XiN2) + 2(X~j + Xj +.-. + XNI) - 4. (8)

By using the relationship between the indices k,i, and j in Eq. (7), the update AX in terms of the

elements of X and D becomes

AXk = Dk + 2(XN2(i-,)+, + XN(i-l)+2 + "'" + XN2(i-)+N2) +
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2(Xj + XN2+i +" XN 2 (N. -I)+j) - 4. (9)

This equation can be written in the form of Eq. (6) if the matrix M is such that

2 form =N 2(i - 1) + 1,N2(i- 1) + 2,...,N 2(i - 1) + N 2

Mkm= andm=j, N2 +j,...,N 2(NI-1) j (10)

0 otherwise

where the m index values corresponding to nonzero Mk. are the indices of the elements of X

specified in Eq. (9). From Eq. (10), we consider the non-zero elements of the kth row of M. These

are the N2 elements starting at term N2(i - 1) + 1, and every N2-th element starting at term j.

Each such element is equal to 2. For elements for which both non-zero conditions in Eq. (10)

are satisfied, the entry in M is equal to 4 (i. e. Mk.. = 4 when k = m, the diagonal elements).

Note that for a given row (k), i and j must satisfy k = N2(i - 1) + j as well as 1 < i < N,

and I < j _ N2. This completely specifies the form of M. As an example, we consider the

case of N, = N2 = 3 measurements. Then there are N = NIN 2 = 9 input neurons, and the 9x9

interconnection matrix is

422200200

242020020

224002002

200422200

M= 0 2 0 2 4 2 0 2 0 (11)

002224002

200200422

020020242

002002224
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In general, M is a block Toeplitz matrix with NjxN Toeplitz submatrices (each of which is

N2xN2), the matrix is singular, and there are only two different submatrices within M. This is a

completely general result for all NI and N2 even if NI # N2 (unequal numbers of measurements

in the two time frames).

The final form of the update equation in Eq. (6) is

AXk = mk, X, + bk, (12)

D k_ Dk -4

which is simply Eq. (9) rewritten using Eq. (10). Thus, the calculation of AXk requires a

matrix-vector multiplication with an added vector 1. The subtraction step Xk(n) - q AXk(n) in

Eq. (5) can easily be incorporated into the matrix-vector multiplication by subtracting 1/,q from

the diagonal elements of M. Denoting this modified matrix as M', Eq. (5) becomes

Xk,(n + 1) = f [-77 E M X,,, (n) - ?tbkI, (13)

which can be implemented with an all-optical architecture, as detailed in Section VII. Additionally,

the structure of M is most useful in designing hybrid optical-digital architectures which are also

discussed in Sect. VII.

A nonlinear function (often referred to as the neuron function) is applied to the output neurons

(before feedback) during the update, as shown in Equations (4) and (5), to keep the Xk values

between zero and one. The nonlinear function we used was the sigmoid function

Xk = f Uk] = 0.5(1 + tanh!), (14)
u0

where the Uk are the pre-thresholded neuron values and the Xk are the thresholded neuron values.
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By defining an alternative neuron function

g[uk] = f[-uk] = 0.5(l + tanh -uk), (15)
UO

then Eq. (13) becomes

X,(n + 1) = g[i M, MXm(n) + 7bkI. (16)

The parameter uo in f[] and g[ I determines the slope of the function, or the degree of

"binarization", of the neurons. A small value for uO results in more binary (0 or 1) values, while

a large value for uO allows more intermediate values. We used uO = 0.2 as discussed in Sect. VI.

In an all-optical implementation of Eq. (16), care must be taken that M' and b be unipolar. For

M' to be unipolar, we require q 0.25 (which should be acceptable, as our present simulations

used q = 0.2, and variations are allowed in this parameter). In general ) will be bipolar (thus, we

should choose A and B in Eq. (2) large enough to insure that , is positive, and this requires use of

a larger C 2 and C3 in Eq. (1) to keep the relative weights of the neural network terms as desired).

These unipolar/bipolar issues are not our primary concern at present.

V Simulated target scenarios

Simulation of the neural network's performance requires input position and velocity measure-

ments of multiple target tracks. In the absence of real measurement data, simulations of multiple

target scenarios were used.. The simulation generates trajectories for intercontinental ballistic

missiles (ICBMs) in the boost phase, from launch through the first 120 seconds of flight. A sensor

frame rate of 10 frames per second was used (one frame every 0.1 second). (We note that this is a
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high sampling rate, and future work can investigate the results obtained with lower sampling rates.)

The two-body (missile and earth) trajectory model 18 is used. Missile acceleration is determined

by the interaction of the thrust vector and a gravity vector which always points towards the earth's

center. The gravity-turn model 18 is used. Each missile has unique launch points and times, plus

flight path and bearing (i. e. elevation and azimuth) angles. The flight path angles range from 3 to

7 degrees (from the vertical), and the bearing angles range from 278 to 361 degrees. The launch

times are randomized, with the launch times uniformly distributed over a ten-second interval.

Measurements are assumed to be taken from an observation satellite in geosynchronous orbit.

All measurements are converted into satellite-centered two-dimensional cartesian coordinates (x,y).

An active sensor such as a laser radar with electronic scanning is assumed, so that range-doppler

measurements can be used to obtain position and velocity information for each target. (While

the radar provides only the radial component of velocity, some a priori knowledge of the sensor-

to-target geometry can be used to compute the cartesian velocity components.) A probability of

detection of unity was assumed for this investigation, which is plausible if the sensor sensitivity is

high. This high sensitivity results in false detections, or clutter noise, which was included in the

model. One clutter point was generated for each target, for a signal-to-noise ratio of one. (This is

our definition of signal-to-noise ratio, based on the assumption that all detected targets and clutter

have the same signal strength.) Clutter positions were uniformly distributed about each target

position, and clutter velocities were uniformly distributed about the earth background velocity, not

the target velocity. The clutter values were bounded by ±7% of the mean target position and earth

background velocity respectively. This produces clutter points that are close to the targets and thus

creates an adverse tracking environment.
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Since the sensor is modeled as -an airborne platform, it is necessary to include jitter errors as

well. Sensor measurement errors due to jitter were modeled as Gaussian random variables. Noise

terms were added independently to each measurement, which is a pessimistic noise model. (A

more realistic model would use the same error for each measurement in a given frame.) The jitter

noise variances were taken as a percentage of the differences between the maximum and minimum

target positions and velocities averaged over all time frames. These percentages (and thus the jitter

variances) were steadily increased over several runs. The exact jitter variances used are detailed

in Section VI.

Three different scenarios were used to provide a variety of simulated target tracks and noise.

All scenarios consist of ten targets and ten clutter points in each time frame. Each scenario has

different combinations of launch points, and flight path and bearing angles, resulting in different

target track combinations. The ten target tracks over 120 seconds of flight time for scenario 3

are shown in Fig. 1 with clutter absent. Tracking was performed over a 1-second interval (10

frame times) within three different time windows in each scenario: an early window within 18-34

seconds after launch, an intermediate window 49-65 seconds after launch, and a late window

100-110 seconds after launch. The 1 second intervals used in each window were selected at

different time points to provide target tracks close to one another and crossing when possible, thus

maximizing the tracking difficulty. Target tracks (and clutter) over the 1-second interval 20.5-21.5

sec after launch (in the early time window) are shown for scenario 3 in Fig. 2. The same scenario

with platform jitter noise added is shown in Fig. 3. The numbers 0 to 9 denote the ten individual

target tracks in Figs. 2 and 3, and the other points represent clutter. As seen, the target tracks are

straight lines in Fig. 2 and deviate from straight lines (due to jitter) in Fig. 3.
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VI Simulated tracking results

Each 1-second interval over which data association was performed constitutes 10 frames or 9

pairs of consecutive frames, at the assumed 0.1 second sensor sample time. An interval of one

second was chosen from each time window (early, intermediate, late) for each scenario in the

manner described in Section V. Thus simulated data association and tracking was done over 9

pairs of frames in different intervals, windows, and scenarios, both with and without measurement

jitter present. The neural net tracking tests were performed by associating measurements between

pairs of consecutive frames, with each pair evaluated independently of the others. This was not a

simulation of tracking in the classical sense, since no state estimates or updates of the target tracks

were performed. Rather this was strictly a test of the data association capabilities of the neural

network, using only measurement data instead of estimates. With 20 measurements per frame

(10 targets and 10 clutter points) there are 400 = 202 neurons or 400 possible data associations

in a single pair of frames. Of these, only 300 are of interest. The remaining 100 associations

represent possible clutter-to-clutter associations which are "don't-care" associations, i. e. we did

not examine the associations between clutter measurements in the first time frame and clutter

measurements in the second time frame. This is valid since hypothesized tracks consisting of

clutter points are discarded by the track evaluation subsystem. Since there are 9 pairs of frames

for each 1-second interval, there are 9 x 300 = 2700 associations of interest per interval. Since

each possible association is represented by a neuron, there are 2700 neuron values of interest per

interval.

The neural net simulations were performed on a Sun workstation-based Hecht-Nielsen hard-
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ware/software neurocomputer system, which emulates the Hopfield neural network at 10 MIPS.

The initial neuron values were randomized using a uniform distribution with a mean value of I/N,

where N is the number of neurons in the network (N = 400 in this case). Tests with different

initial neuron values showed little difference and thus our data are only for one set of initial neuron

values. Two other free parameters in the Hopfield network itself are the step size 17 in Eq. (4)

and the slope of the neuron function determined by uo in Eq. (14). After several different values

were tried, we used 77 = 0.2 and uO = 0.2. The remaining free parameters, the coefficients A

and B in Eq. (2), were varied with the time window u3e. The values ultimately used are shown

in Table 1. The relative orders of magnitude of A and B are determined by the average target

position and velocity squared differences in each interval. (This is fairly predictable in advance

for target scenarios of interest). The exact A and B values were determined empirically. While

the empirical nature of A and B is troublesome, we note that our experimental results indicate a

certain amount of robustness with respect to these constants, so that accuracy to five digits is not

required. The simulation results indicate that the network performance is robust for a range of

different average distance values (in different scenarios), meaning that precise a priori information

about the average distances is not necessary. Selection of A and B can thus be perfomed "on the

fly" based on the following criteria:

1. Estimates of the average distances between measurements for the given time frame pair.

2. The number of measurements in both time frames. This is known prior to using the neural

network.

Specific A and B values can be selected from a table of near-optimal values determined empirically
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by running Monte Carlo simulations on different scenarios, using different average distances and

numbers of measurements. Other parameters can be varied as well, such as the ratio of numbers

of targets to clutter level in each frame, but our results imply that the two items listed above

(particularly item 1) have the greatest effect on the network.

We now consider the output threshold used to determine if a neuron is "on" or "off" after the

network converges. In general, the neuron values did not converge to strictly binary values of

zero and one, but stabilized at intermediate values (this is possible, given the sigmoidal neuron

function). The final (stable) neuron output values XAj were binarized by thresholding at 0.49 and

0.5 1, and the data association results were determined from the thresholded values. Neurons with

outputs below 0.49 were considered "off", and those with outputs above 0.51 were considered

"on". Neuron values between the thresholds (0.49 < Xj < 0.51) were considered errors. We

found that allowing the neurons to attain intermediate (non-binary) values during iterations resulted

in better convergence properties for the network, as binary neurons appear to increase the incidence

of oscillations. (It has been demonstrated that the Hopfield neural network can oscillate between

two different neuron patterns with equally low energy 19 . In this case a final solution is selected at

random from one of the two oscillatory states. These oscillating cases usually lead to an incorrect

solution). Our final output thresholding (after convergence) simply permits easy interpretation of

the neuron pattern.

Initial tracking results are shown in Table 2. For each scenario and time interval, three

independent simulation runs were performed with randomized missile launch times and clutter

values. Results were then averaged over the three independent runs. Data shown in the table list

the average percentage of the 2700 neuron values in error over the 9 pairs of time frames in each
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interval and the average number of iterations required per frame pair for convergence. (When all

neuron values in the net changed by less than 0.0001 between iterations the network was said to

have converged. This value is quite small. In future work, larger values will be used and a fixed

number of iterations will be considered. We expect a reduction in the number of iterations.) The

network successfully associated all targets in all of the cases, for an error rate of zero (even with

clutter present). The network did oscillate between two different neuron patterns in 2.5 % of the

runs. However, in each of these cases the neuron patterns only differed in the clutter-to-clutter

associations, or the 100 "don't-care" neurons per frame pair. Thus these oscillations did not

degrade the tracking performance.

We now quantify the amount of jitter added to the measurements in the three time windows.

Table 3 lists these data. In each time window, we used six different amounts of jitter (referred to

as jitter levels 1-6). The jitter was modeled as a Gaussian distribution, centered about the position

and velocity values for each target and clutter point. The six jitter levels correspond to standard

deviations o equal to 0.15, 0.25, 0.35, 0.5, 0.75, and 1.0 percent. These a values are different

percentages of the maximum differences in position and velocity of the targets over the 1 second

interval used in each time window. Since each time window corresponds to a different portion of

the flight path, a given a (jitter level) corresponds to a different standard deviation in position (a.,p

and a) in units of meters, and a different standard deviation in velocity (a,,, and a,) in units of

meters/sec. The ap, to a,, differ for each time window as shown in Table 3. As seen, all errors

increase for later time windows. Position errors increase, since target distances z and y increase

with time. Velocity errors increase since velocities increase with time (over the first 120 seconds

of flight). Our use of a jitter error that is a percentage of the position and velocity values (rather
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than a fixed error for all time windows) is realistic, since a sensor with a larger field of view (FOV)

would be expected to have a greater error than a sensor with a small FOV. In Fig. 3, jitter level I is

used. This figure pictorially quantifies these o values.

Tables 4-6 show the data association results for each of the three scenarios with jitter present

in addition to clutter noise. Each table shows the results for the six different jitter levels. The

percentage of neuron errors over a single run of 9 time frame pairs (2700 DAs) is shown for each

jitter level. The average number of iterations used for each frame pair is also shown, along with

the total number of tracks out of 10 lost over the 9 frame pairs. A lost track for one target results

when any misassociation is made for that target in any pair of frames. We now discuss these data.

We first note that the number of iterations required is small in all cases. Use of a larger

difference in neuron values to define convergence can further reduce the number of iterations. We

next note that the late time window gave no errors in all three scenarios, which is not surprising

since the targets are farthest from one another in the late time window (late boost phase). We expect

and observe more neuron errors in the two earlier time windows because of the closer proximity

of targets, which naturally makes association more difficult. We also expect and observe more

neuron errors as the jitter error increases. However, we note that in only four cases are more than

0.67% of the 2700 neuron DAs in one I-second interval in error, the maximum error is only 1.7%,

and in many cases there are no errors. At the maximum jitter level (1%) we see the limitations

of a deterministic nearest-neighbor approach, as "incorrect" measurements may be closer to one

another than "correct" measurements. Probabilistic data assocation methods (such as JPDA) can

compensate for high jitter levels, but at the cost of increased algorithm and hardware complexity

as discussed in Section 11. Higher jitter levels can be tolerated with our data association neural net
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when an estimation filter (Kalman filter) is used to compensate for the jitter errors. The target

state estimates are then close to the "correct" measurements and the data association neural net

will associate them properly. This is an estimate-to-measurement data association, as opposed to

the crude measurement-to-measurement data association we have done, which remains as future

work. The good results presented here, using measurements only, demonstrate the potential of our

data association neural net approach.

The number of lost tracks is a very severe measure since an error in any of the 9 x 300 =

2700 data associations (30 per frame pair for a given target) results in a lost track (by our present

definition). For example, at jitter level 6, in the early time window in scenario 1, we have 1%

neuron errors (27 errors out of 2700 data associations), but at least nine of these occur for some

frame pair for 9 of the 10 targets (9 lost tracks out of 10). Thus, even though the error rates are

quite low, the number of lost tracks can still be high. This illustrates the need for error correction

over multiple frames, as it is unrealistic to expect perfect data association performance from a

real system. By using multi-frame error correction, tracks can be maintained even with a nonzero

misassociation rate. Thus a low nonzero error rate is acceptable for the data association neural

net since it is used in conjunction with a multi-frame error correction system. An optical Hough

transform system can be used for multi-frame correction as discussed elsewhere 6. In this case, the

optical Hough transform system is used for longer-term tracking, while the data association neural

network is used for short-term data association where its error rate is acceptable. A multi-frame

correction system can also compensate for data dropout, (which occurs when the probability of

detection is less than 1), and for merged measurements (where two or more targets overlap into a

single measurement). While the network can be adjusted (via the A and B coefficients) to handle
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such cases successfully, in general they are best handled by multi-frame correction. Future work

will address these advanced issues.

VII Optical architectures

As mentioned previously, Eq. (16) in Sect. IV shows that each iterative computation of the

neuron values Xk can be accomplished as a matrix-vector multiplication and vector addition, with

the nonlinear thresholding function of Eq. (15) applied. This formulation is attractive since all

of these operations can be implemented optically with presently available components using a

system such as the one shown in Figure 4, where the necessary focusing lenses have been omitted

for clarity. The neurons Xm(n) in Eq. (16) are represented by a linear array of laser diodes or a

1-D SLM in plane P1. In the all-optical system, P1 is a SLM. The matrix M' in Eq. (16) is the

2-D transmission matrix in plane P2. It can be fixed (on film) for any given maximum N,. The

light from P1 is focused onto P2, and the transmitted light is summed at P4, thus accomplishing

the matrix-vector multiplication. The bias vector b is produced by another array of laser diodes

or another I-D spatial light modulator in P3. (Alternatively,.& can be added electronically to the

matrix-vector product.) The bias vector is summed with the matrix-vector result at P4, completing

the computations within the brackets in Eq. (16). (The scaling factor 7 in Eq. (16), where

0 < q < 1, can be introduced either at both P1 and P3, or with adjustment of the readout light for

the P4 optical device). The sigmoid transfer function gf ] in Eq. (15) is implemented by using a

transmissive device at P4 with similar nonlinear transmission characteristics. Thus Eq. (16) can

be computed entirely with optics in parallel. The results at P4 are the updated neuron values
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Xk(n + 1) which are fed back to PI for the next iteration. A detector array can be used at P4

to convert the optical results into an electronic signal which is fed back to Pl. In an all-optical

system, an optically addressed 1-D SLM is used at P4 and no optical-electronic conversion is

required. The transfer function for this P4 optical SLM should match g[ I in Eq. (15). Since the

exact form for g is not critical, such all-optical system is possible with no electronics involved in

the neural net iterations.

The strength of this all-optical approach is that all operations are performed optically, thus

maximizing the speed at which the neural net operates. Further, the system of Fig. 4 is realizable

with current or near-term devices. In particular the matrix M' in plane P2 is fixed for all iterations

and for a given maximum N, and N2 (number of measurements in target time frames 1 and 2),

and thus can simply be stored on film as a fixed mask. The number of measurements (and thus

N, and N2) can be bounded by controlling the sensor's field-of-view (FOV) during tracking, so it

is not unreasonable to assume a maximum for Nm. Thus a single mask can be generated for the

maximum N,,, (and/or N, and N2) case, and this same mask can be used for smelUer numbers of

measurements by using subsets of the elements in PI and P3 (and P4) and properly spacing them.

This eliminates the need for any type of SLM in the P2 plane.

The implementation in Fig. 4 is limited in size by the maximum number of elements available

in the arrays at PI and P3 (and P4 if detectors are used), and the maximum interconnection mask

size. Unfortunately the required numbers of neurons and interconnections grow exponentially

with the number of targets, so even modest numbers of targets require many neurons. As an

example consider the case of only 32 targets in each time frame, where the number of neurons

is then 322 = 1024. This requires 1024 elements in P1 and P3 (and P4 if necessary), and an
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interconnection matrix with over one million elements (1024 x 1024). Partitioning of the sensor

FOV can reduce the number of targets, but this may not be feasible in all cases. Given practical

optical device constraints, an alternative to the direct parallel implementation of our algorithm as

in Fig. 4 must be used if large numbers of targets are involved. We now address this issue and

advance a new architecture that uses the structure of M.

As shown in the 9x9 example in Eq. (11) there are only two basic submatrices in the matrix

M, both of which are Toeplitz (this applies regardless of Nm, NI, and N2). This suggests

a natural partitioning of the matrix-vector multiplication into separate computations using the

Toeplitz submatrices. Acousto-optical architectures have been suggested which perform efficient

matrix-vector multiplications for matrices with special structure 20-22. Toeplitz matrices lend

themselves particularly well to acousto-optic (AO) implementations, as each row of the matrix

is a shifted version of the previous row. This leads to efficient use of the AO cell and high

throughput data rates, since the matrix rows can be continuously fed into the AO cell. However,

AO architectures require support electronics to provide the continuous inputs needed for the matrix

rows. Thus, although AO cells are fast I-D devices, more parallelism is introduced by using 2-D

SLMs. Hence, we consider such an architecture. A time-multiplexing technique for implementing

a neural network using a SLM has been suggested 23, which partitions the interconnection matrix

and utilizes multiple summations to achieve the desired matrix-vector product. This will result in

a large increase in the iteration time if the submatrices are small and numerous. An additional

problem is the SLM frame rate, which can result in prohibitive delays while exchanging different

submatrices. The storage and bookkeeping of the partial matrix outputs produced is yet another

problem.

27



For the reasons noted above, we feel that a better approach (for large Nm cases) is to use

the architecture of Fig. 4 (with a detector at P4 and a SLM at P2) and to take advantage of the

structure of M (it contains only two different submatrices), and the recent availability of high

data rate binary/ternary SLMs. Specifically, since our interconnection matrix M has only two

different submatrices, the SLM is required to make only two frame changes during each iteration.

Notice that this still puts a burden on the SLM frame rate, as 30 iterations still require 60 frame

changes. However, since the submatrices in M always have a maximum of only three levels

(for any Nm), we can use binary SLMs (by writing each submatrix as the sum of two binary

matrices) or ternary SLMs such as the magneto-optic SLM (MOSLM) 24, to efficiently achieve

the required matrix-vector products. A liquid crystal television device (LCTV) has too large of

a frame time 25 (1/30 second) since 30 iterations would require two seconds. MOSLMs have

shown much higher frame rate capabilities, with 351 frames/sec reported 24 and with frame

rates of 1000-2000 frames/sec possible 26. At 351 frames/sec, 30 iterations at two frames per

iterations require only 0.17 second to complete, which is close to the 0.1 second frame time used

in our tracking simulations. Optically addressed SLMs with frame rates above 6000 frames/sec

are another solution 2 7 that allows convergence of the neuron values in much less than 0.1 second.

Our future work will further detail such architectures. Our present concern is to note that present

optical devices can easily implement our data association neural net algorithm.
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VIII Conclusions

A data association neural network to associate multiple moving targets over several time

frames was described, and simulated target measurement data for it was shown. The target data

were generated using realistic scenarios consisting of ten targets and ten clutter points in each

time frame (SNR = 1). The network demonstrated rapid convergence, with perfect association

in the absence of measurement jitter noise and very low neuron error rates in the presence of

measurement jitter noise. We note that a comparison of these results with those obtained from a

standard data association algorithm is lacking. This comparison was not done because our neural

network approach is advantageous for scenarios with larger numbers of targets, which present

practical simulation problems. Comparisons with limited numbers of targets are useful only for

demonstrating the potential of the neural network approach. Such a comparison can be performed

in future work.

The form of the neuron evolution equation is such that the network can be implemented

as an optical matrix-vector multiplier. Several possible optical architectures to implement this

algorithm were examined, using present-day device capabilities while still achieving rapid real-

time performance. An all-optical architecture was described which requires no optical-electronic

signal conversions, and which implements the algorithm completely in parallel. To accomodate

larger numbers of targets, both AO-based and SLM-based architectures using time-multiplexed

submatrices were outlined which take advantage of the particular form of the matrices used in the

matrix-vector multiplications.

29



IX Acknowledgments

Funding for this research was provided by the Strategic Defense Initiative Office of Innovative

Science and Technology monitored by the Office of Naval Research. The authors would also like

to thank their colleague Dr. Michael Lemmon for his invaluable aid regarding the simulation of

ballistic missile trajectories.

30



References

1. 0. Drummond and S. Blackman, "Challenges of developing algorithms for multiple sensor,

multiple target tracking," Proc. Soc. Photo-Opt. Instrum. Eng. 1096, 244-255 (1989).

2. S. Blackman, Multiple-Target Tracking with Radar Applications, (Artech House, Norwood

MA, 1986).

3. F. Burgeois and J. Lassalle, "An extension of the Munkres algorithm for the assignment

problem to rectangular matrices," Communications of the ACM 14, 802-806 (1971).

4. T. Fortmann, Y. Bar-Shalom, and M. Scheffe, "Sonar tracking of multiple targets using joint

probabilistic data association," IEEE Journal of Oceanic Engineering OE-8, 173-183 (1983).

5. J. Fisher and D. Casasent, "Fast JPDA multitarget tracking algorithm," Appl. Opt. 28,

371-376 (1989).

6. M. Yee and D. Casasent, "Measurement-based neural net multitarget tracker," Proc. Soc.

Photo-Opt. Instrum. Eng. 1305, 251-262 (1990).

7. B. Porat and B. Friedlander, "A frequency domain algorithm for multiframe detection and

estimation of dim targets," IEEE Trans. PAMI 12,398-401 (1990).

8. K. Preston, "Algorithm for subpixel target detection using cellular automata," Proc. Soc.

Photo-Opt. Instrum. Eng. 1058, 10-14 (1989).

9. R. M. Kuczewski, "Neural network approaches to multi-target tracking," Proc. IEEE First

International Conference on Neural Networks, 4, 619-633, (1987).

31



10. M. W. Roth, "Neural networks for extraction of weak targets in high clutter environments,"

IEEE Trans. on Systems, Man and Cybernetics 19, 1210-1217 (1989).

11. D. Casasent and J. Slaski, "Optical track initiator for multitarget tracking," Appl. Opt. 27,

4546-4553 (1988).

12. D. Casasent and R. Krishnapuram, "Detection of target trajectories using the Hough trans-

form," Appl. Opt. 26,247-251 (1987).

13. J. Hopfield and D. Tank, "'Neural' computation of decisions in optimization problems,"

Biological Cybernetics 52, 141-152 (1985).

14. J. Hopfield, "Neural networks and physical systems with emergent collective computational

abilities," Proc. Nati. Acad. Sci., 79, 2554-2558, (1982).

15. D. Sengupta and R. Iltis, "Neural solution to the multitarget tracking data association

problem," IEEE Trans. on Aerospace and Electronic Systems AES-25, 96-108 (1989).

16. E. Barnard and D. Casasent, "Multitarget tracking with cubic energy optical neural nets,"

Appl. Opt. 28,791-798 (1989).

17. M. Yee, E. Barnard, and D. Casasent, "Multitarget tracking with an optical neural net using a

quadratic energy function," Proc. Soc. Photo-Opt. Instrum. Eng. 1192,496-502 (1989).

18. B. Blasingame, Astronautics, (McGraw-Hill, New York, 1964).

19. J. Bruck and J. Goodman, "A generalized convergence theorem for neural networks," IEEE

Trans. on Information Theory 34, 1089-1092 (1988).

32



20. D. Casasent, "Acoustooptic linear algebra processors : architectures, algorithms, and

applications," Proc. IEEE, 72, 831-849, (1984).

21. D. Casasent and B. Taylor, "Banded-matrix high-performance algorithm and architecture,"

Appl. Opt. 24, 1476-1480 (1985).

22. E. Barnard and D. Casasent, "Optical neural net for matrix inversion," Appl. Opt. 28,

2499-2504 (1989).

23. M. Oita, J. Ohta, S. Tai, and K. Kyuma, "Optical implementation of large-scale neural

networks using a time-division-multiplexing technique," Optics Letters 15, 227-229 (1990).

24. J. A. Davis and J. M. Waas, "Current status of the magneto-optic spatial light modulator,"

Proc. Soc. Photo-Opt. Instrum. Eng. 1150,27-43 (1989).

25. H. K. Liu and T. H. Chao, "Liquid crystal television spatial light modulators," Appl. Opt. 28,

4772-4780 (1989).

26. N. H. Farhat and Z. Y. Shae, "Scheme for enhancing the frame rate of magnetooptic spatial

light modulators," Appl. Opt. 28, 4792-4800 (1989).

27. G. Moddel, K. Johnson, W. Li, and R. Rice, "High-speed binary optically addressed spatial

light modulator," Applied Physics Letters 55, 537-539 (1989).

33



List of Figures

Fig. 1 The ten target tracks for 0-120 seconds for scenario 3.

Fig. 2 One second of early time window flight with clutter and no jitter for scenario 3.
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Fig. 4 All-optical implementation of our data association neural network.
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Fig. 1: The ten target tracks for 0-120 seconds for scenario 3.
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Fig. 2: One second of early time window flight with clutter and no jitter for scenario 3.
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Fig. 3: One second of early time window flight with clutter and jitter for scenario 3.
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time coefficients
window A B

1 7 17672
2 2 2360
3 0.2 432

Table. 1: Neural net coefficients used in Eq. (2) for each time window.



time % neuron avg. no. of
scenario interval errors iterations

(sec) _ _

34.5-35.5 0 17
1 64-65 0 19

110-111 0 40
18-19 0 29

2 54-55 0 25
110-111l 0 23

20.5-21.5 0 30
3 49-50 0 23

100-101 0 19

Table. 2: Data association results with clutter and no jitter.



time jitter standard deviation
window level ap O'Vp Os,, O'Y,

1 7 76 0.2 0.2
2 11 126 0.4 0.4

early 3 15 177 0.5 0.5
4 22 253 0.8 0.8
5 33 379 1.1 1.1
6 44 505 1.5 1.5
1 14 77 0.5 0.5
2 24 128 0.9 0.8

intermediate 3 33 179 1.3 1.2
4 47 255 1.8 1.7
5 71 383 2.7 2.5
6 94 510 3.6 3.3
1 59 85 1.4 1.1
2 9, 142 2.3 1.8

late 3 137 199 3.2 2.5
4 196 285 4.5 3.5
5 294 427 6.8 5.3

1_ _ 16 392 569 9.0 7.0

Table. 3: Position and velocity error standard deviations for different jitter levels in the three time windows.



time jitter % neuron avg. no. of no. of lost
window level errors iterations tracks

1 0 15 0
2 0 19 0

early 3 0.07 19 2
4 0.18 18 4
5 0.6 17 9
6 1.0 21 9
1 0 16 0
2 0 16 0

intermediate 3 0 17 0
4 0 16 0
5 0.1 15 2
6 0.15 18 3
1 0 61 0
2 0 60 0

late 3 0 60 0
4 0 62 0
5 0 65 0

1 6 0 63 0

Table. 4: Data association results with jitter for scenario 1.



time jitter % neuron avg. no. of no. of lost
window level errors iterations tracks

1 0.03 27 1
2 0.15 27 1

early 3 0.41 26 2
4 0.52 25 3
5 1.1 20 9
6 1.7 24 9
1 0 39 0
2 0 38 0

intermediate 3 0 38 0
4 0 40 0
5 0.07 44 2
6 0.22 43 3
1 0 24 0
2 0 23 0

late 3 0 23 0
4 0 21 0
5 0 22 0

1 6 0 20 0

Table. 5: Data association results with jitter for scenario 2.



time jitter % neuron avg. no. of no. of lost
window level erirr iterations tracks

1 0 25 0
2 0 20 0

early 3 0.07 22 2
4 0.18 24 4
5 0.67 24 9

_____ 6 1 1.0 30 9
1 0 19 0
2 0 20 0

intermediate 3 0 21 0
4 0 22 0
5 0.07 20 2
6 10.15 19 3
1 0 20 0
2 0 20 0

late 3 0 22 0
4 0 22 0
5 0 21 0
6 0- 20 1 0

Table. 6: Data association results with jitter for scenario 3.


